【Cloud Compare】——学习笔记

1.1 导出文件

导出点云数据为 PCD 格式时,系统提供了三种保存选项,分别是 Compressed Binary(压缩二进制)、Binary(二进制)、ASCII/Text(文本)

  1. Compressed Binary(压缩二进制格式)
    特点:点云数据以压缩的二进制形式存储,文件体积较小,适合用于大量点云数据。
    优点:文件体积最小,读取速度快。
    缺点:由于是压缩格式,不易直接阅读和编辑,通常需要特定软件进行解码。
  2. Binary(二进制格式)
    特点:点云数据以未压缩的二进制形式存储,文件体积较大,但可以较快地被读取和处理。
    优点:文件大小适中,读取速度比文本格式快,且比压缩二进制格式更容易处理。
    缺点:文件内容依然不可读,除非用软件打开。
  3. ASCII/Text(文本格式)
    特点:点云数据以纯文本的形式存储,每个点的坐标和属性直接写入文件。
    优点:人可读,便于直接检查和修改数据。适合需要手动编辑或调试的情况。
    缺点:文件体积最大,处理速度最慢。
    在这里插入图片描述
### CloudCompare点云去噪方法 #### 使用 SOR 滤波器进行点云去噪 CloudCompare 提供了多种工具来处理点云数据,其中一种常用的方法是通过统计离群点移除 (Statistical Outlier Removal, SOR) 来实现点云去噪。这种方法基于点与其邻近点之间的距离分布来进行噪声检测和去除。 要应用 SOR 滤波,在 CloudCompare 的界面中可以找到相应的功能选项[^2]: 1. 打开需要处理的点云文件。 2. 选择 `Filter` 菜单下的 `Outliers removal...` 命令。 3. 在弹出对话框里设置参数,比如 KNN 邻域大小以及标准差倍数等。 4. 应用过滤操作并查看效果;如果必要的话调整参数重新执行直到满意为止。 对于更复杂的场景或者当默认提供的图形化接口不足以满足需求时,则可以通过编写脚本来调用 CC Core Library 实现自定义化的去噪流程。这允许用户深入控制每一个细节,并能针对特定应用场景优化算法性能。 ```cpp // C++ example using CCCoreLib to apply SOR filter programmatically. #include "CCCoreLib.h" void remove_outliers(CCCoreLib::PointCloud& cloud){ double mean_k = 50; // Number of neighbors considered during the analysis float std_dev_mul_thresh = 1.0f; CCCoreLib::SORFilter sor; sor.setInputCloud(cloud); sor.setMeanK(mean_k); sor.setStddevMulThresh(std_dev_mul_thresh); bool success = sor.filterInPlace(); } ``` 上述代码展示了如何利用 CCCoreLib 进行编程级别的 SOR 滤波操作。此函数接收一个点云集合作为输入,并对其进行原地修改以删除异常值。注意这里的参数可以根据实际的数据集特征灵活设定。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路明呦呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值