学习笔记——概率论与数理统计(第五章)
学习来源:https://www.bilibili.com/video/av36206436/
第五章
5.1 大数定律
5.1.1 切比雪夫不等式
定理:若
E
(
X
)
,
D
(
X
)
存在,
∀
ϵ
>
0
,
P
(
∣
X
−
E
(
X
)
∣
≥
ϵ
)
≤
D
(
X
)
ϵ
2
定理:若E ( X ) ,D ( X ) 存在,\forall \epsilon>0,P(|X-E(X)|\geq\epsilon)\leq\displaystyle\frac{D(X)}{\epsilon^2}
定理:若E(X),D(X)存在,∀ϵ>0,P(∣X−E(X)∣≥ϵ)≤ϵ2D(X)
(变形:)
P
(
∣
X
−
E
(
X
)
∣
≥
ϵ
)
≥
1
−
D
(
X
)
ϵ
2
P(|X-E(X)|\geq\epsilon)\geq1-\displaystyle\frac{D(X)}{\epsilon^2}
P(∣X−E(X)∣≥ϵ)≥1−ϵ2D(X)
5.1.2 切比雪夫大数定律
收敛:
a
n
→
a
:
∀
ϵ
>
0
,
∃
N
>
0
,
n
>
N
时,
∣
a
n
−
a
∣
<
ϵ
a_n\to a:\forall\epsilon>0,\exist N>0,n>N时,|a_n-a|<\epsilon
an→a:∀ϵ>0,∃N>0,n>N时,∣an−a∣<ϵ
依概率收敛:
x
n
→
P
a
:
∀
ϵ
>
0
,
∃
N
>
0
,
n
>
N
时,
lim
n
→
∞
P
(
∣
x
n
−
a
∣
<
ϵ
)
=
1
\displaystyle x_n\overset{P}{\to}a:\forall\epsilon>0,\exist N>0,n>N时,\lim\limits_{n\to\infin}P(|x_n-a|<\epsilon)=1
xn→Pa:∀ϵ>0,∃N>0,n>N时,n→∞limP(∣xn−a∣<ϵ)=1
伯努利大数定律:
n
重伯努利实验,
A
发生了
m
n
次,
lim
n
→
∞
P
(
∣
m
n
n
−
p
∣
<
ϵ
)
=
1
n重伯努利实验,A发生了m_n次,\lim\limits_{n\to\infin}P(|\displaystyle\frac{m_n}{n}-p|<\epsilon)=1
n重伯努利实验,A发生了mn次,n→∞limP(∣nmn−p∣<ϵ)=1
(变形:)
lim
n
→
∞
P
(
∣
m
n
n
−
p
∣
≥
ϵ
)
=
0
(变形:)\lim\limits_{n\to\infin}P(|\displaystyle\frac{m_n}{n}-p|\geq\epsilon)=0
(变形:)n→∞limP(∣nmn−p∣≥ϵ)=0
即:频率收敛于概率
设
x
1
,
x
2
,
⋯
,
x
n
独立同分布,
x
i
=
{
1
发生
0
不发生
,
设x_1,x_2,\cdots,x_n独立同分布,x_i=\begin{cases} 1& \text{发生}\\0& \text{不发生} \end{cases},
设x1,x2,⋯,xn独立同分布,xi={10发生不发生,
则
E
(
X
i
)
=
p
,
D
(
X
i
)
=
p
(
1
−
p
)
,
m
n
=
∑
i
=
1
n
x
i
,
则E(X_i)=p,D(X_i)=p(1-p),m_n=\sum\limits_{i=1}^{n}x_i,
则E(Xi)=p,D(Xi)=p(1−p),mn=i=1∑nxi,
m
n
n
=
1
n
∑
i
=
1
n
x
i
,
p
=
E
(
1
n
∑
x
i
)
=
1
n
∑
i
=
1
n
E
(
X
i
)
,
\displaystyle\frac{m_n}{n}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i,p=E(\displaystyle\frac{1}{n}\sum x_i)=\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i),
nmn=n1i=1∑nxi,p=E(n1∑xi)=n1i=1∑nE(Xi),
lim
n
→
∞
P
(
∣
1
n
∑
i
=
1
n
x
i
−
1
n
∑
i
=
1
n
E
(
X
i
)
∣
<
ϵ
)
=
1
\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i)|<\epsilon)=1
n→∞limP(∣n1i=1∑nxi−n1i=1∑nE(Xi)∣<ϵ)=1
切比雪夫大数定律: x 1 , x 2 , ⋯ , x n 是两两不相关的变量, E ( X i ) 和 D ( X i ) 都存在,方差有界, D ( X i ) ≤ M ] , ∀ ϵ > 0 , ∀ ϵ > 0 , lim n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − 1 n ∑ i = 1 n E ( X i ) ∣ < ϵ ) = 1 切比雪夫大数定律:x_1,x_2,\cdots,x_n 是两两不相关的变量,E(X_i)和D(X_i)都存在,方差有界,D(X_i)\leq M],∀ ϵ > 0 , \forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i)|<\epsilon)=1 切比雪夫大数定律:x1,x2,⋯,xn是两两不相关的变量,E(Xi)和D(Xi)都存在,方差有界,D(Xi)≤M],∀ϵ>0,∀ϵ>0,n→∞limP(∣n1i=1∑nxi−n1i=1∑nE(Xi)∣<ϵ)=1
即:变量的均值收敛于期望的均值
推论: x 1 , x 2 , ⋯ , x n 独立同分布, E ( X i ) = μ , D ( X i ) = σ 2 , ∀ ϵ > 0 , lim n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − μ ∣ < ϵ ) = 1 推论:x_1,x_2,\cdots,x_n独立同分布,E(X_i)=\mu,D(X_i)=\sigma^2,\forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\mu|<\epsilon)=1 推论:x1,x2,⋯,xn独立同分布,E(Xi)=μ,D(Xi)=σ2,∀ϵ>0,n→∞limP(∣n1i=1∑nxi−μ∣<ϵ)=1
辛钦大数定律: x 1 , x 2 , ⋯ , x n 独立同分布, E ( X i ) = μ ,方差无要求, ∀ ϵ > 0 , lim n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − μ ∣ < ϵ ) = 1 辛钦大数定律:x_1,x_2,\cdots,x_n独立同分布,E(X_i)=\mu,方差无要求,\forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\mu|<\epsilon)=1 辛钦大数定律:x1,x2,⋯,xn独立同分布,E(Xi)=μ,方差无要求,∀ϵ>0,n→∞limP(∣n1i=1∑nxi−μ∣<ϵ)=1
即:平均数收敛于期望
5.2 中心极限定理
现象由大量相互独立的因素影响
大量独立同分布的变量和的极限分布是正态分布
定理:
X
1
,
X
2
,
⋯
,
x
n
独立同分布,
E
(
X
i
)
=
μ
,
D
(
X
i
)
=
σ
2
,
0
<
σ
2
<
+
∞
,则
lim
n
→
∞
P
(
∑
i
=
1
n
x
i
−
n
μ
n
σ
≤
x
)
=
Φ
0
(
x
)
定理:X_1,X_2,\cdots,x_n 独立同分布,E(X_i)=\mu,D(X_i)=\sigma^2,0<\sigma^2<+\infin,则 \displaystyle\lim\limits_{n\to\infin}P(\frac{\sum\limits_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma}\leq x)=\Phi_{0}(x)
定理:X1,X2,⋯,xn独立同分布,E(Xi)=μ,D(Xi)=σ2,0<σ2<+∞,则n→∞limP(nσi=1∑nxi−nμ≤x)=Φ0(x)
设
Y
=
∑
i
=
1
n
x
i
,则
E
(
Y
)
=
n
μ
,
D
(
Y
)
=
n
σ
2
设Y=\sum\limits_{i=1}^{n}x_i,则E(Y)=n\mu,D(Y)=n\sigma^2
设Y=i=1∑nxi,则E(Y)=nμ,D(Y)=nσ2
∑
i
=
1
n
x
i
−
n
μ
n
σ
可按照
N
(
0
,
1
)
近似,
∑
i
=
1
n
x
i
按照
N
(
n
μ
,
n
σ
2
)
计算
\displaystyle\frac{\sum\limits_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma}可按照N ( 0 , 1 ) 近似,\sum\limits_{i=1}^{n}x_i 按照N(n\mu,n\sigma^2)计算
nσi=1∑nxi−nμ可按照N(0,1)近似,i=1∑nxi按照N(nμ,nσ2)计算
棣莫弗 − 拉普拉斯定理: Y n 是参数为 n , p 的二项分布,则 lim n → ∞ P ( Y n − n p n p ( 1 − p ) ≤ x ) = Φ 0 ( x ) 棣莫弗-拉普拉斯定理:Y_n是参数为n,p的二项分布,则 \displaystyle\lim\limits_{n\to\infin}P(\frac{Y_n-np}{\sqrt{np(1-p)}}\leq x)=\Phi_0(x) 棣莫弗−拉普拉斯定理:Yn是参数为n,p的二项分布,则n→∞limP(np(1−p)Yn−np≤x)=Φ0(x)
二项分布近似:
n 大, n p 适中——泊松分布
n 大, n p 大——正态分布