学习笔记——概率论与数理统计(第五章)

学习来源:https://www.bilibili.com/video/av36206436/

第五章

5.1 大数定律

5.1.1 切比雪夫不等式

定理:若 E ( X ) , D ( X ) 存在, ∀ ϵ > 0 , P ( ∣ X − E ( X ) ∣ ≥ ϵ ) ≤ D ( X ) ϵ 2 定理:若E ( X ) ,D ( X ) 存在,\forall \epsilon>0,P(|X-E(X)|\geq\epsilon)\leq\displaystyle\frac{D(X)}{\epsilon^2} 定理:若E(X)D(X)存在,ϵ>0P(XE(X)ϵ)ϵ2D(X)
(变形:) P ( ∣ X − E ( X ) ∣ ≥ ϵ ) ≥ 1 − D ( X ) ϵ 2 P(|X-E(X)|\geq\epsilon)\geq1-\displaystyle\frac{D(X)}{\epsilon^2} P(XE(X)ϵ)1ϵ2D(X)

5.1.2 切比雪夫大数定律

收敛:
a n → a : ∀ ϵ > 0 , ∃ N > 0 , n > N 时, ∣ a n − a ∣ < ϵ a_n\to a:\forall\epsilon>0,\exist N>0,n>N时,|a_n-a|<\epsilon anaϵ>0,N>0,n>N时,ana<ϵ

依概率收敛:
x n → P a : ∀ ϵ > 0 , ∃ N > 0 , n > N 时, lim ⁡ n → ∞ P ( ∣ x n − a ∣ < ϵ ) = 1 \displaystyle x_n\overset{P}{\to}a:\forall\epsilon>0,\exist N>0,n>N时,\lim\limits_{n\to\infin}P(|x_n-a|<\epsilon)=1 xnPaϵ>0,N>0,n>N时,nlimP(xna<ϵ)=1

伯努利大数定律:
n 重伯努利实验, A 发生了 m n 次, lim ⁡ n → ∞ P ( ∣ m n n − p ∣ < ϵ ) = 1 n重伯努利实验,A发生了m_n次,\lim\limits_{n\to\infin}P(|\displaystyle\frac{m_n}{n}-p|<\epsilon)=1 n重伯努利实验,A发生了mn次,nlimP(nmnp<ϵ)=1
(变形:) lim ⁡ n → ∞ P ( ∣ m n n − p ∣ ≥ ϵ ) = 0 (变形:)\lim\limits_{n\to\infin}P(|\displaystyle\frac{m_n}{n}-p|\geq\epsilon)=0 (变形:)nlimP(nmnpϵ)=0

即:频率收敛于概率

设 x 1 , x 2 , ⋯   , x n 独立同分布, x i = { 1 发生 0 不发生 , 设x_1,x_2,\cdots,x_n独立同分布,x_i=\begin{cases} 1& \text{发生}\\0& \text{不发生} \end{cases}, x1,x2,,xn独立同分布,xi={10发生不发生
则 E ( X i ) = p , D ( X i ) = p ( 1 − p ) , m n = ∑ i = 1 n x i , 则E(X_i)=p,D(X_i)=p(1-p),m_n=\sum\limits_{i=1}^{n}x_i, E(Xi)=p,D(Xi)=p(1p),mn=i=1nxi,
m n n = 1 n ∑ i = 1 n x i , p = E ( 1 n ∑ x i ) = 1 n ∑ i = 1 n E ( X i ) , \displaystyle\frac{m_n}{n}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i,p=E(\displaystyle\frac{1}{n}\sum x_i)=\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i), nmn=n1i=1nxi,p=E(n1xi)=n1i=1nE(Xi),
lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − 1 n ∑ i = 1 n E ( X i ) ∣ < ϵ ) = 1 \displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i)|<\epsilon)=1 nlimP(n1i=1nxin1i=1nE(Xi)<ϵ)=1

切比雪夫大数定律: x 1 , x 2 , ⋯   , x n 是两两不相关的变量, E ( X i ) 和 D ( X i ) 都存在,方差有界, D ( X i ) ≤ M ] , ∀ ϵ > 0 , ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − 1 n ∑ i = 1 n E ( X i ) ∣ < ϵ ) = 1 切比雪夫大数定律:x_1,x_2,\cdots,x_n 是两两不相关的变量,E(X_i)和D(X_i)都存在,方差有界,D(X_i)\leq M],∀ ϵ > 0 , \forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i)|<\epsilon)=1 切比雪夫大数定律:x1,x2,,xn是两两不相关的变量,E(Xi)D(Xi)都存在,方差有界,D(Xi)M]ϵ>0,ϵ>0,nlimP(n1i=1nxin1i=1nE(Xi)<ϵ)=1

即:变量的均值收敛于期望的均值

推论: x 1 , x 2 , ⋯   , x n 独立同分布, E ( X i ) = μ , D ( X i ) = σ 2 , ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − μ ∣ < ϵ ) = 1 推论:x_1,x_2,\cdots,x_n独立同分布,E(X_i)=\mu,D(X_i)=\sigma^2,\forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\mu|<\epsilon)=1 推论:x1,x2,,xn独立同分布,E(Xi)=μ,D(Xi)=σ2,ϵ>0,nlimP(n1i=1nxiμ<ϵ)=1

辛钦大数定律: x 1 , x 2 , ⋯   , x n 独立同分布, E ( X i ) = μ ,方差无要求, ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − μ ∣ < ϵ ) = 1 辛钦大数定律:x_1,x_2,\cdots,x_n独立同分布,E(X_i)=\mu,方差无要求,\forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\mu|<\epsilon)=1 辛钦大数定律:x1,x2,,xn独立同分布,E(Xi)=μ,方差无要求,ϵ>0,nlimP(n1i=1nxiμ<ϵ)=1

即:平均数收敛于期望

5.2 中心极限定理

现象由大量相互独立的因素影响
大量独立同分布的变量和的极限分布是正态分布

定理: X 1 , X 2 , ⋯   , x n 独立同分布, E ( X i ) = μ , D ( X i ) = σ 2 , 0 < σ 2 < + ∞ ,则 lim ⁡ n → ∞ P ( ∑ i = 1 n x i − n μ n σ ≤ x ) = Φ 0 ( x ) 定理:X_1,X_2,\cdots,x_n 独立同分布,E(X_i)=\mu,D(X_i)=\sigma^2,0<\sigma^2<+\infin,则 \displaystyle\lim\limits_{n\to\infin}P(\frac{\sum\limits_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma}\leq x)=\Phi_{0}(x) 定理:X1,X2,,xn独立同分布,E(Xi)=μ,D(Xi)=σ2,0<σ2<+,则nlimP(n σi=1nxinμx)=Φ0(x)
设 Y = ∑ i = 1 n x i ,则 E ( Y ) = n μ , D ( Y ) = n σ 2 设Y=\sum\limits_{i=1}^{n}x_i,则E(Y)=n\mu,D(Y)=n\sigma^2 Y=i=1nxi,则E(Y)=nμ,D(Y)=nσ2
∑ i = 1 n x i − n μ n σ 可按照 N ( 0 , 1 ) 近似, ∑ i = 1 n x i 按照 N ( n μ , n σ 2 ) 计算 \displaystyle\frac{\sum\limits_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma}可按照N ( 0 , 1 ) 近似,\sum\limits_{i=1}^{n}x_i 按照N(n\mu,n\sigma^2)计算 n σi=1nxinμ可按照N(0,1)近似,i=1nxi按照N(nμ,nσ2)计算

棣莫弗 − 拉普拉斯定理: Y n 是参数为 n , p 的二项分布,则 lim ⁡ n → ∞ P ( Y n − n p n p ( 1 − p ) ≤ x ) = Φ 0 ( x ) 棣莫弗-拉普拉斯定理:Y_n是参数为n,p的二项分布,则 \displaystyle\lim\limits_{n\to\infin}P(\frac{Y_n-np}{\sqrt{np(1-p)}}\leq x)=\Phi_0(x) 棣莫弗拉普拉斯定理:Yn是参数为n,p的二项分布,则nlimP(np(1p) Ynnpx)=Φ0(x)

二项分布近似:
n 大, n p 适中——泊松分布
n 大, n p 大——正态分布

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值