【信号与系统】(十一)离散系统的时域分析 ——卷积和

卷积和

连续是卷积积分。

1 序列的时域分解

在这里插入图片描述

任意离散序列 f ( k ) f(k) f(k)可表示为

2 任意离散信号作用下的零状态响应

3 卷积和公式

卷积和的定义
已知定义在区间 ( – ∞ , ∞ ) (–∞,∞) () 上的两个函数 f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k),则定义
在这里插入图片描述
f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k)的卷积和,简称卷积;记为
在这里插入图片描述

注意:求和是在虚设的变量 i i i 下进行的, i i i 为求和变量, k k k 为参变量。结果仍为 k k k 的函数。

在这里插入图片描述

若有两个序列 f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k),如果序列 f 1 ( k ) f1(k) f1(k)是因果序列,即有 f 1 ( k ) = 0 , k < 0 f_1(k)=0, k<0 f1(k)=0,k<0, 则卷积和可改写为:
在这里插入图片描述
若有两个序列 f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k),如果序列 f 2 ( k ) f_2(k) f2(k)是因果序列,即有 f 2 ( k ) = 0 , k < 0 f_2(k)=0, k<0 f2(k)=0,k<0, 则卷积和可改写为:
在这里插入图片描述

如果序列 f 1 ( k ) f_1(k) f1(k) f 2 ( k ) f_2(k) f2(k)均为因果序列,即若 f 1 ( k ) = f 2 ( k ) = 0 , k < 0 f_1(k)=f_2(k)=0,k<0 f1(k)=f2(k)=0,k<0, 则卷积和可写为:
在这里插入图片描述
ε ( k ) : k > 0 \varepsilon(k):k>0 ε(k)k>0

4 卷积和的图解法

在这里插入图片描述

注意: k k k 为参变量。

5 卷积和的不进位乘法运算

f ( k ) = f(k)= f(k)=所有两序列序号之和为 k k k的那些样本乘积之和。
在这里插入图片描述

f 1 ( 1 ) f 2 ( 0 ) : k = 0 + 1 f_1(1)f_2(0):k=0+1 f1(1)f2(0)k=0+1

f 1 ( 1 ) f 2 ( 1 ) + f 1 ( 2 ) f 2 ( 0 ) : k = 1 + 1 = 2 + 0 = 2 f_1(1)f_2(1)+f_1(2)f_2(0):k=1+1=2+0=2 f1(1)f2(1)+f1(2)f2(0)k=1+1=2+0=2

f 1 ( 2 ) f 2 ( 1 ) + f 1 ( 3 ) f 2 ( 0 ) : k = 2 + 1 = 3 + 0 = 3 f_1(2)f_2(1)+f_1(3)f_2(0):k=2+1=3+0=3 f1(2)f2(1)+f1(3)f2(0)k=2+1=3+0=3

f 1 ( 3 ) f 2 ( 1 ) : k = 3 + 1 f_1(3)f_2(1):k=3+1 f1(3)f2(1)k=3+1

2 × 3 = 6 : k = 1 + 0 = 1 2\times 3=6:k=1+0=1 2×3=6k=1+0=1

6 卷积和的性质

常用卷积和公式

《工程信号与系统》作者:郭宝龙等
国家精品课程:信号与系统 ,中国大学MOOC,郭宝龙,朱娟娟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值