卷积和
连续是卷积积分。
1 序列的时域分解
任意离散序列 f ( k ) f(k) f(k)可表示为

2 任意离散信号作用下的零状态响应

3 卷积和公式
卷积和的定义
已知定义在区间
(
–
∞
,
∞
)
(–∞,∞)
(–∞,∞) 上的两个函数
f
1
(
k
)
f_1(k)
f1(k)和
f
2
(
k
)
f_2(k)
f2(k),则定义
为
f
1
(
k
)
f_1(k)
f1(k)与
f
2
(
k
)
f_2(k)
f2(k)的卷积和,简称卷积;记为
注意:求和是在虚设的变量 i i i 下进行的, i i i 为求和变量, k k k 为参变量。结果仍为 k k k 的函数。
若有两个序列
f
1
(
k
)
f_1(k)
f1(k)与
f
2
(
k
)
f_2(k)
f2(k),如果序列
f
1
(
k
)
f1(k)
f1(k)是因果序列,即有
f
1
(
k
)
=
0
,
k
<
0
f_1(k)=0, k<0
f1(k)=0,k<0, 则卷积和可改写为:
若有两个序列
f
1
(
k
)
f_1(k)
f1(k)与
f
2
(
k
)
f_2(k)
f2(k),如果序列
f
2
(
k
)
f_2(k)
f2(k)是因果序列,即有
f
2
(
k
)
=
0
,
k
<
0
f_2(k)=0, k<0
f2(k)=0,k<0, 则卷积和可改写为:
如果序列
f
1
(
k
)
f_1(k)
f1(k)与
f
2
(
k
)
f_2(k)
f2(k)均为因果序列,即若
f
1
(
k
)
=
f
2
(
k
)
=
0
,
k
<
0
f_1(k)=f_2(k)=0,k<0
f1(k)=f2(k)=0,k<0, 则卷积和可写为:
ε
(
k
)
:
k
>
0
\varepsilon(k):k>0
ε(k):k>0



4 卷积和的图解法

注意: k k k 为参变量。




5 卷积和的不进位乘法运算

f
(
k
)
=
f(k)=
f(k)=所有两序列序号之和为
k
k
k的那些样本乘积之和。

f 1 ( 1 ) f 2 ( 0 ) : k = 0 + 1 f_1(1)f_2(0):k=0+1 f1(1)f2(0):k=0+1
f 1 ( 1 ) f 2 ( 1 ) + f 1 ( 2 ) f 2 ( 0 ) : k = 1 + 1 = 2 + 0 = 2 f_1(1)f_2(1)+f_1(2)f_2(0):k=1+1=2+0=2 f1(1)f2(1)+f1(2)f2(0):k=1+1=2+0=2
f 1 ( 2 ) f 2 ( 1 ) + f 1 ( 3 ) f 2 ( 0 ) : k = 2 + 1 = 3 + 0 = 3 f_1(2)f_2(1)+f_1(3)f_2(0):k=2+1=3+0=3 f1(2)f2(1)+f1(3)f2(0):k=2+1=3+0=3
f 1 ( 3 ) f 2 ( 1 ) : k = 3 + 1 f_1(3)f_2(1):k=3+1 f1(3)f2(1):k=3+1

2 × 3 = 6 : k = 1 + 0 = 1 2\times 3=6:k=1+0=1 2×3=6:k=1+0=1
6 卷积和的性质


常用卷积和公式




《工程信号与系统》作者:郭宝龙等
国家精品课程:信号与系统 ,中国大学MOOC,郭宝龙,朱娟娟