【NLP】GloVe原理详解

一、什么是GloVe

  • 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息。
  • 输入:语料库
  • 输出:词向量
  • 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。

二、GloVe的实现步骤

在这里插入图片描述

1、构建共现矩阵

设共现矩阵为 X X X,其元素为 X i , j \displaystyle X_{i,j} Xi,j
X i , j \displaystyle X_{i,j} Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。
举个栗子:
设有语料库:i love you but you love him i am sad
这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号中心词窗口内容
0ii love you
1lovei love you but
2yi love you but you
3butove you but you love
4youyou but you love him
5lovebut you love him i
6himyou love him i am
7ilove him i am sad
8amhim i am sad
9sadi am sad

窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:
X l o v e , b u t + = 1 \displaystyle X_{love,but} +=1 Xlove,but+=1
X l o v e , y o u + = 1 \displaystyle X_{love,you} +=1 Xlove,you+=1
X l o v e , h i m + = 1 \displaystyle X_{love,him} +=1 Xlove,him+=1
X l o v e , i + = 1 \displaystyle X_{love,i} +=1 Xlove,i+=1
使用窗口将整个语料库遍历一遍,即可得到共现矩阵X:
在这里插入图片描述

2、使用GloVe模型训练词向量

(1)模型怎么来的

  • 矩阵单词i那一行的和:
    X i = ∑ j N X i , j \displaystyle X_{i} =\sum ^{N}_{j} X_{i,j} Xi=jNXi,j
  • 条件概率,表示单词k出现在单词i语境中的概率:
    P i , k = X i , k X i \displaystyle P_{i,k} =\frac{X_{i,k}}{X_{i}} Pi,k=XiXi,k
  • 两个条件概率的比率:
    r a t i o i , j , k = P i , k P j , k \displaystyle ratio_{i,j,k} =\frac{P_{i,k}}{P_{j,k}} ratioi,j,k=Pj,kPi,k

作者发现,ratioi,j,k这个指标是有规律的,规律统计在下表:

r a t i o i , j , k \displaystyle ratio_{i,j,k} ratioi,j,k的值单词 j , i j,i j,i 相关单词 j , i j,i j,i 不相关
单词 i , j i,j i,j 相关趋近1很大
单词 i , j i,j i,j 不相关很小趋近1

思想:假设已经得到了词向量,如果用词向量 v i \displaystyle v_{i} vi v j \displaystyle v_{j} vj v k \displaystyle v_{k} vk通过某种函数计算 r a t i o i , j , k \displaystyle ratio_{i,j,k} ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明词向量中蕴含了共现矩阵中所蕴含的信息。
设用词向量 v i \displaystyle v_{i} vi v j \displaystyle v_{j} vj v k \displaystyle v_{k} vk计算 r a t i o i , j , k \displaystyle ratio_{i,j,k} ratioi,j,k的函数为 g ( v i , v j , v k ) \displaystyle g( v_{i} ,v_{j} ,v_{k}) g(vi,vj,vk)(先不去管具体的函数形式),那么应该有:
P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) \displaystyle\frac{P_{i,k}}{P_{j,k}}=ratio_{i,j,k} =g( v_{i} ,v_{j} ,v_{k}) Pj,kPi,k=ratioi,j,k=g(vi,vj,vk)
即:
P i , k P j , k = g ( v i , v j , v k ) \displaystyle\frac{P_{i,k}}{P_{j,k}} =g( v_{i} ,v_{j} ,v_{k}) Pj,kPi,k=g(vi,vj,vk)
r a t i o i , j , k \displaystyle ratio_{i,j,k} ratioi,j,k越趋向于1,表示单词以k为中心词时i,j越相关。则 P i , k \displaystyle P_{i,k} Pi,k, P j , k \displaystyle P_{j,k} Pj,k越接近。
(2)损失函数
由上面推到很容易想到用二者的差方来作为代价函数:
J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 \displaystyle J=\sum ^{N}_{i,j} f( X_{i,j})\left( v^{T}_{i} v_{j} +b_{i} +b_{j} -log( X_{i,j})\right)^{2} J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
但是仔细一看,模型中包含3个单词,这就意味着要在N∗N∗N的复杂度上进行计算,太复杂了,最好能再简单点。
作者的脑洞是这样的,仔细思考 g ( v i , v j , v k ) \displaystyle g( v_{i} ,v_{j} ,v_{k}) g(vi,vj,vk)

  • 要考虑单词 i i i和单词 j j j之间的关系,那 g ( v i , v j , v k ) \displaystyle g( v_{i} ,v_{j} ,v_{k}) g(vi,vj,vk)中大概要有这么一项吧: v i − v j \displaystyle v_{i} -v_{j} vivj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么 v i − v j \displaystyle v_{i} -v_{j} vivj大概是个合理的选择;
  • r a t i o i , j , k \displaystyle ratio_{i,j,k} ratioi,j,k是个标量,那么 g ( v i , v j , v k ) \displaystyle g( v_{i} ,v_{j} ,v_{k}) g(vi,vj,vk)最后应该是个标量,因为其输入都是向量,所以內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k \displaystyle ( v_{i} -v_{j})^{T} v_{k} (vivj)Tvk
  • 然后作者又往 ( v i − v j ) T v k \displaystyle ( v_{i} -v_{j})^{T} v_{k} (vivj)Tvk的外面套了一层指数运算 e x p ( ) exp() exp(),得到最终的 g ( v i , v j , v k ) = e x p ( ( v i − v j ) T v k ) \displaystyle g( v_{i} ,v_{j} ,v_{k})=exp\left(( v_{i} -v_{j})^{T} v_{k}\right) g(vi,vj,vk)=exp((vivj)Tvk)
    最关键的第3步,为什么套了一层exp()?
    套上之后,我们的目标是让以下公式尽可能地成立:
    P i , k P j , k = g ( v i , v j , v k ) \displaystyle\frac{P_{i,k}}{P_{j,k}} =g( v_{i} ,v_{j} ,v_{k}) Pj,kPi,k=g(vi,vj,vk)
    即:
    P i , k P j , k = e x p ( ( v i − v j ) T v k ) \displaystyle\frac{P_{i,k}}{P_{j,k}}=exp\left(( v_{i} -v_{j})^{T} v_{k}\right) Pj,kPi,k=exp((vivj)Tvk)
    即:
    P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) \displaystyle\frac{P_{i,k}}{P_{j,k}}= \frac{exp\left( v^{T}_{i} v_{k}\right)}{exp\left( v^{T}_{j} v_{k}\right)} Pj,kPi,k=exp(vjTvk)exp(viTvk)
    然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
    P i , k = e x p ( v i T v k ) \displaystyle P_{i,k} =exp\left( v^{T}_{i} v_{k}\right) Pi,k=exp(viTvk)
    P j , k = e x p ( v j T v k ) \displaystyle P_{j,k} =exp\left( v^{T}_{j} v_{k}\right) Pj,k=exp(vjTvk)
    然而分子分母形式相同,就可以把两者统一考虑了,即:
    P i , j = e x p ( v i T v j ) \displaystyle P_{i,j} =exp\left( v^{T}_{i} v_{j}\right) Pi,j=exp(viTvj)
    本来我们追求:
    P i , k P j , k = g ( v i , v j , v k ) \displaystyle\frac{P_{i,k}}{P_{j,k}} =g( v_{i} ,v_{j} ,v_{k}) Pj,kPi,k=g(vi,vj,vk)
    现在只需要追求:
    P i , j = e x p ( v i T v j ) \displaystyle P_{i,j} =exp\left( v^{T}_{i} v_{j}\right) Pi,j=exp(viTvj)
    两边取个对数:
    l o g ( P i , j ) = v i T v j \displaystyle log( P_{i,j}) =v^{T}_{i} v_{j} log(Pi,j)=viTvj
    那么损失函数就可以简化为:
    J = ∑ i , j N ( v i T v j − l o g ( P i , j ) ) 2 \displaystyle J=\sum ^{N}_{i,j}\left( v^{T}_{i} v_{j} -log( P_{i,j})\right)^{2} J=i,jN(viTvjlog(Pi,j))2
    现在只需要在 N ∗ N N∗N NN的复杂度上进行计算,而不是 N ∗ N ∗ N N∗N∗N NNN,现在关于为什么外面套一层 e x p ( ) exp() exp()就清楚了,正是因为套了一层 e x p ( ) exp() exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
    然而,出了点问题。仔细看这两个式子:
    l o g ( P i , j ) \displaystyle log( P_{i,j}) log(Pi,j) 不等于 l o g ( P j , i ) \displaystyle log( P_{j,i}) log(Pj,i)但是 v i T v j \displaystyle v^{T}_{i} v_{j} viTvj等于 v j T v i \displaystyle v^{T}_{j} v_{i} vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
    l o g ( P i , j ) = v i T v j 和 l o g ( P j , i ) = v j T v i \displaystyle log( P_{i,j}) =v^{T}_{i} v_{j} 和log( P_{j,i}) =v^{T}_{j} v_{i} log(Pi,j)=viTvjlog(Pj,i)=vjTvi
    数学上出了问题。
    补救一下好了。
    先将代价函数中的条件概率展开:
    l o g ( P i , j ) = v i T v j \displaystyle log( P_{i,j}) =v^{T}_{i} v_{j} log(Pi,j)=viTvj
    因为:
    P i , k = X i , k X i \displaystyle P_{i,k} =\frac{X_{i,k}}{X_{i}} Pi,k=XiXi,k
    所以展开为:
    l o g ( X i , j ) − l o g ( X i ) = v i T v j \displaystyle log( X_{i,j}) -log( X_{i}) =v^{T}_{i} v_{j} log(Xi,j)log(Xi)=viTvj
    将其变为:
    l o g ( X i , j ) = v i T v j + b i + b j \displaystyle log( X_{i,j}) =v^{T}_{i} v_{j} +b_{i} +b_{j} log(Xi,j)=viTvj+bi+bj
    即添了一个偏差项 b j b_{j} bj,并将 l o g ( X i , j ) log( X_{i,j}) log(Xi,j)吸收到偏差项 b i b_{i} bi中。
    于是代价函数就变成了:
    J = ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 \displaystyle J=\left( v^{T}_{i} v_{j} +b_{i} +b_{j} -log( X_{i,j})\right)^{2} J=(viTvj+bi+bjlog(Xi,j))2
    然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
    J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 \displaystyle J=\sum ^{N}_{i,j} f( X_{i,j})\left( v^{T}_{i} v_{j} +b_{i} +b_{j} -log( X_{i,j})\right)^{2} J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
    具体权重函数应该是怎么样的呢?
    首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
    在这里插入图片描述
    这个函数图像如下所示:
    在这里插入图片描述

接下来就是通过最小化损失函数,求得参数 v i , v j , b i , b j v_{i},v_{j},b_{i},b_{j} vi,vj,bi,bj

3、训练GloVe模型

虽然很多人声称GloVe是一种无监督(unsupervised learing)的学习方式(因为它确实不需要人工标注label),但其实它还是有label的,这个label就是以上公式中的 l o g ( X i , j ) \displaystyle log( X_{i,j}) log(Xi,j),而公式中的向量 v i , v j v_{i},v_{j} vi,vj就是要不断更新/学习的参数,所以本质上它的训练方式跟监督学习的训练方法没什么不一样,都是基于梯度下降的。
具体地,这篇论文里的实验是这么做的:采用了AdaGrad的梯度下降算法,对矩阵 X X X中的所有非零元素进行随机采样,学习曲率(learning rate)设为0.05,在vector size小于300的情况下迭代了50次,其他大小的vectors上迭代了100次,直至收敛。最终学习得到的是两个vector是 v i , v j v_{i},v_{j} vi,vj,因为 X 是对称的(symmetric),所以从原理上讲 v i , v j v_{i},v_{j} vi,vj是也是对称的,他们唯一的区别是初始化的值不一样,而导致最终的值不一样。

所以这两者其实是等价的,都可以当成最终的结果来使用。但是为了提高鲁棒性,我们最终会选择两者之和
v i + v j v_{i}+v_{j} vi+vj作为最终的vector
(两者的初始化不同相当于加了不同的随机噪声,所以能提高鲁棒性)。在训练了400亿个token组成的语料后,得到的实验结果如下图所示:
在这里插入图片描述
这个图一共采用了三个指标:语义准确度,语法准确度以及总体准确度。那么我们不难发现Vector Dimension在300时能达到最佳,而context Windows size大致在6到10之间。

4、GloVe与LSA、Word2Vec的比较

LSA(Latent Semantic Analysis)是一种比较早的count-based的词向量表征工具,它也是基于co-occurance matrix的,只不过采用了基于奇异值分解(SVD)的矩阵分解技术对大矩阵进行降维,而我们知道SVD的复杂度是很高的,所以它的计算代价比较大。还有一点是它对所有单词的统计权重都是一致的。而这些缺点在GloVe中被一一克服了。

而word2vec最大的缺点则是没有充分利用所有的语料,所以GloVe其实是把两者的优点结合了起来。从这篇论文给出的实验结果来看,GloVe的性能是远超LSA和word2vec的,但网上也有人说GloVe和word2vec实际表现其实差不多。

参考文献:
1、四步理解GloVe!(附代码实现):https://blog.csdn.net/weixin_41510260/article/details/100049700
2、理解GloVe模型:https://blog.csdn.net/coderTC/article/details/73864097

  • 12
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值