在时序预测任务中,传统的深度学习模型通常依赖于复杂的架构,如循环神经网络(RNN)和基于注意力的Transformer模型,这些模型虽然在一定程度上能够捕捉到时序数据中的长距离依赖关系,但也面临着计算开销大、过拟合等挑战。为了寻找更为高效且简洁的替代方案,本文提出了TSMixer,一种基于纯MLP(多层感知机)的时序预测网络。与传统的RNN和注意力机制不同,TSMixer通过引入时间混合和特征混合操作,成功实现了对时序数据的高效建模。通过简化的架构和创新的设计,TSMixer不仅在长时段预测任务中表现出色,还在多维度时序数据和大规模零售需求预测中展现了巨大的潜力。
文章详细链接:时序预测网络TSMiXer 论文精读
代码链接;TSMixer代码解析链接