GGUF模型的不同量化模式说明

文章介绍了Qwen1.5-72B-Chat_GGUF模型提供的8种不同量化变体,包括Q5_K_M和Q4_K_M,它们在精度、资源使用和速度上有所权衡。推荐使用Q5_K_M以保持大部分性能,或根据内存需求选择Q4_K_M。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在下载Qwen1.5-72B-Chat_GGUF模型时,发现其提供了8种不同的 GGUF模型。它们遵循特定的命名约定:“q”+ 用于存储权重的位数(精度)+ 特定变体。

下图是为了证明不同的模型质量,按照 llama.cpp 在wiki测试集上评估他们的困惑度。结果如下:

在这里插入图片描述

q8_0:与浮点数16几乎无法区分。资源使用率高,速度慢。不建议大多数用户使用。
q6_k:将Q8_K用于所有张量。
q5_k_m:将 Q6_K 用于一半的 attention.wv 和 feed_forward.w2 张量,否则Q5_K。
q5_0: 原始量化方法,5位。精度更高,资源使用率更高,推理速度更慢。
q4_k_m:将 Q6_K 用于一半的 attention.wv 和 feed_forward.w2 张量,否则Q4_K
q4_0:原始量化方法,4 位。
q3_k_m:将 Q4_K 用于 attention.wv、attention.wo 和 feed_forward.w2 张量,否则Q3_K
q2_k:将 Q4_K 用于 attention.vw 和 feed_forward.w2 张量,Q2_K用于其他张量。

根据经验,建议使用 Q5_K_M,因为它保留了模型的大部分性能。或者,如果要节省一些内存,可以使用 Q4_K_M。

内容参考:https://blog.csdn.net/znsoft/article/details/134939795
### DeepSeek 模型量化方法实现 #### 1. 概述 模型量化是一种减少神经网络计算资源需求的技术,能够显著降低内存占用并加速推理过程而不明显损失准确性。对于 DeepSeek 模型而言,采用4位(4-bit)量化方案可以极大程度上提升部署效率和降低成本。 #### 2. 准备工作 为了实施DeepSeek-7B-chat模型的4bit量化以及后续基于Qlora技术的微调操作,在开始之前需确保已经安装好必要的依赖库,并准备好相应的硬件设施来支持整个流程[^2]。 #### 3. 获取预训练模型 从Hugging Face Hub平台下载所需的已量化的DeepSeek-R1版本之一,比如`DeepSeek-R1-Distill-Qwen-7B`或`DeepSeek-R1-UD-IQ1_S`,这些模型文件通常会以GGUF/GPTQ格式提供给用户。具体可以通过Python脚本来完成此步骤: ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", allow_patterns=["*.gguf"] ) ``` 上述代码片段展示了如何利用 `huggingface_hub` 库中的 `snapshot_download()` 函数指定仓库ID及允许模式匹配规则从而自动拉取目标模型至本地环境[^4]。 #### 4. 执行量化转换 一旦获得了未经压缩的基础权重参数之后,则可着手对其进行进一步加工处理——即执行实际意义上的“量化”。这一步骤涉及到了对原始浮点数表示形式下的权值矩阵应用特定算法将其映射到较低精度的数据类型上去;而对于激活函数部分则往往采取统计学手段来进行近似估计。值得注意的是,不同框架下具体的API接口可能会有所差异,因此建议参照官方文档说明进行相应调整。 #### 5. 微调优化 经过初步量化后的模型虽然已经在一定程度上实现了体积缩减与速度增益的目标,但在某些应用场景里可能仍存在表现不佳的情况。此时便可通过引入少量标注数据集配合专门设计好的学习机制(如Qlora)对该状态下的网络结构做针对性改进,进而达到更好的实用效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值