1.Lorenz系统
美国著名气象学家E.N.Lorenz在1963年提出来的用来刻画热对流不稳定性的模型,即Lorenz混沌模型,可以简单描述如下:
{ x ˙ = a ( y − x ) y ˙ = c x − x z − y z ˙ = x y − b z \left\{ \begin{array}{l} \dot{x}=a\left( y-x \right)\\ \dot{y}=cx-xz-y\\ \dot{z}=xy-bz\\ \end{array} \right. ⎩⎨⎧x˙=a(y−x)y˙=cx−xz−yz˙=xy−bz
当参数取值为 a = 10 , b = 8 3 , c = 28 a=10,b=\frac{8}{3},c=28 a=10,b=38,c=28时,Lorenz系统有一个混沌吸引子,如下图所示:
其数值仿真实现代码如下:
clear;clc;
[T,Y] = ode45(@Lorenz,[0 300],[0.1;0.1;0.1]);
hold on
plot3(Y(:,3),Y(:,1),Y(:,2),'b','LineWidth',0.5);
view(-30,40);
xlabel('z(t)','FontName','Times New Roman','FontSize',15);
ylabel</