Lorenz系统、简单的Rossler系统和Chua电路系统的混沌吸引子——MATLAB实现

1.Lorenz系统

美国著名气象学家E.N.Lorenz在1963年提出来的用来刻画热对流不稳定性的模型,即Lorenz混沌模型,可以简单描述如下:
{ x ˙ = a ( y − x ) y ˙ = c x − x z − y z ˙ = x y − b z \left\{ \begin{array}{l} \dot{x}=a\left( y-x \right)\\ \dot{y}=cx-xz-y\\ \dot{z}=xy-bz\\ \end{array} \right. x˙=a(yx)y˙=cxxzyz˙=xybz
当参数取值为 a = 10 , b = 8 3 , c = 28 a=10,b=\frac{8}{3},c=28 a=10,b=38,c=28时,Lorenz系统有一个混沌吸引子,如下图所示:
图1.1Lorenz的混沌吸引子
其数值仿真实现代码如下:

clear;clc;
[T,Y] = ode45(@Lorenz,[0 300],[0.1;0.1;0.1]);
hold on
plot3(Y(:,3),Y(:,1),Y(:,2),'b','LineWidth',0.5);
view(-30,40);
xlabel('z(t)','FontName','Times New Roman','FontSize',15);
ylabel</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值