具有对称性质的单参数混沌镜像系统的切换控制

近年来,混沌已经应用到许多工程领域,例如:信息科学、复杂神经网络、信号处理、通信保密等。因此,许多学者一直探索新的混沌动力学。
一些简单的光滑三维二次连续自治系统能生成混沌。1994年,Sportt提出了19个简单的混沌系统。每个系统仅有5项和2个非线性项或6项和1个非线性项。并且依次描述了每个混沌系统的平衡点、三个Lyapunov指数和分形维。1999年,陈关荣等人提出了一个新的三维二次连续混沌系统,后来被称之为 C h e n Chen Chen系统。2002年,吕金虎等人提出了另外一个新的三维二次连续混沌系统,后来被称之为 L u ¨ L\ddot{u} Lu¨系统。后来,在三维二次连续的自治系统中,诸多学者发现了许多光滑的混沌系统。与这些研究成果对比,同时构造具有一个对称参数的两个混沌系统的问题尚未被研究。
混沌系统能生成具有不同形状的混沌吸引子。2004年,Zhou首先提出了一个光滑三维二次连续的自治系统,该系统含9个参数和3个二次交叉乘积项,具有生成球形混沌吸引子的能力。混沌吸引子的两个代表性的形状是蝴蝶翅膀形状和涡卷形状。除了双翅膀吸引子之外,三翅膀和四翅膀吸引子的研究也是非常值得关注的。
近年来,诸多学者主要利用切换控制方法,来生成多涡卷或者多翅膀混沌吸引子。2004年,吕金虎等人研究了对称混沌吸引子的问题,取得了重要的研究成果。然而,两个问题尚未得到研究。一个问题是如何连接两个对称混沌吸引子,来生成一个新的对称混沌吸引子;另一个问题是两个混沌系统如何消除混沌。
本节提出两个具有4个二次项和1个对称参数的三维连续自治混沌系统,两个系统能生成两个新的对称混沌吸引子。本节分别计算了每个系统的三个Lyapunov指数和相应的Lyapunov维数,来验证混沌的存在性。利用新的切换控制方法,两个对称混沌吸引子能迅速地连接成一个新的对称混沌吸引子。并且,设计具有适当参数的几个简单的平面切换控制律,来有效消除混沌。

1. 两个混沌系统的构造

构造一个具有对称参数的两个光滑三维二次连续自治混沌系统如下:
第一个混沌系统
{ x ˙ = − 6 x + 18 y − a z 2 y ˙ = − 6 y − 18 x z z ˙ = − 20 + x y + 3 x 2 \left\{ \begin{array}{l} \dot{x}=-6x+18y-az^2\\ \dot{y}=-6y-18xz\\ \dot{z}=-20+xy+3x^2\\ \end{array} \right. x˙=6x+18yaz2y˙=6y18xzz˙=20+xy+3x2
第二个混沌系统
{ x ˙ = − 6 x + 18 y + a z 2 y ˙ = − 6 y − 18 x z z ˙ = − 20 + x y + 3 x 2 \left\{ \begin{array}{l} \dot{x}=-6x+18y+az^2\\ \dot{y}=-6y-18xz\\ \dot{z}=-20+xy+3x^2\\ \end{array} \right. x˙=6x+18y+az2y˙=6y18xzz˙=20+xy+3x2
其中 a a a是一个对称参数。
当取对称参数 a = 3 a=3 a=3时,第一个混沌系统取初始条件 ( x 0 , y 0 , z 0 ) = ( 1 , 1 , 1 ) (x_0,y_0,z_0)=(1,1,1) (x0,y0,z0)=(1,1,1)和第二个混沌系统取初始条件 ( x 0 , y 0 , z 0 ) = ( − 1 , − 1 , − 1 ) (x_0,y_0,z_0)=(-1,-1,-1) (x0,y0,z0)=(1,1,1),这两个系统分别生成两个对称混沌吸引子,如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
以下是实现上述过程的MATLAB代码:

clear;clc;
x0 = [1,1,1,-1,-1,1];
tspan = [0,50];
[T,Y] = ode45(@dxdy,tspan,x0);
figure(1)
plot(Y(:,1),Y(:,2),'color',[0.25,0.15,0.7])
hold on
plot(Y(:,4),Y(:,5),'color',[0.85,0.2,0.3])
xlabel('x','FontName','Times New Roman','FontSize',20)
ylabel('y','FontName','Times New Roman','FontSize',20)
set(gca,'FontName','Times New Roman','FontSize',20,'LineWidth',2)

figure(2)
plot(Y(:,1),Y(:,3),'color',[0.25,0.15,0.7])
hold on
plot(Y(:,4),Y(:,6),'color',[0.85,0.2,0.3])
xlabel('x','FontName','Times New Roman','FontSize',20)
ylabel('z','FontName','Times New Roman','FontSize',20)
set(gca,'FontName','Times New Roman','FontSize',20,'LineWidth',2)

figure(3)
plot(Y(:,2),Y(:,3),'color',[0.25,0.15,0.7])
hold on
plot(Y(:,5),Y(:,6),'color',[0.85,0.2,0.3])
xlabel('y','FontName','Times New Roman','FontSize',20)
ylabel('z','FontName','Times New Roman','FontSize',20)
set(gca,'FontName','Times New Roman','FontSize',20,'LineWidth',2)

figure(4)
plot3(Y(:,1),Y(:,2),Y(:,3),'color',[0.25,0.15,0.7])
hold on
plot3(Y(:,4),Y(:,5),Y(:,6),'color',[0.85,0.2,0.3])
xlabel('x','FontName','Times New Roman','FontSize',20)
ylabel('y','FontName','Times New Roman','FontSize',20)
zlabel('z','FontName','Times New Roman','FontSize',20)
set(gca,'FontName','Times New Roman','FontSize',20,'LineWidth',2)

function dy = dxdy(~,y)
a = 3;

dy = zeros(6,1);
dy(1) = -6 * y(1) + 18 * y(2) - a * y(3)^2;
dy(2) = -6 * y(2) - 18 * y(1) * y(3);
dy(3) = -20 + y(1) * y(2) + 3 * y(1)^2;
dy(4) = -6 * y(4) + 18 * y(5) + a * y(6)^2;
dy(5) = -6 * y(5) - 18 * y(4) * y(6);
dy(6) = -20 + y(4) * y(5) + 3 * y(4)^2;
dy = [dy(1);dy(2);dy(3);dy(4);dy(5);dy(6)];
end

通过简单地观测上述数值仿真的图像,易知第一个混沌系统生成的混沌吸引子与第二个混沌系统生成的混沌吸引子是对称的。

2. 两个混沌系统的动力学分析

第一个混沌系统的雅可比矩阵 J 1 J_1 J1

J 1 = [ − 6 18 − 2 a z − 18 z − 6 − 18 x 6 x + y x 0 ] = A 1 + x B 1 + y C 1 + z D 1 J_1=\left[ \begin{matrix} -6& 18& -2az\\ -18z& -6& -18x\\ 6x+y& x& 0\\ \end{matrix} \right] =A_1+xB_1+yC_1+zD_1 J1=618z6x+y186x2az18x0=A1+xB1+yC1+zD1
其中,
A 1 = [ − 6 18 0 0 − 6 0 0 0 0 ] , B 1 = [ 0 0 0 0 0 − 18 6 1 0 ] A_1=\left[ \begin{matrix} -6& 18& 0\\ 0& -6& 0\\ 0& 0& 0\\ \end{matrix} \right] ,B_1=\left[ \begin{matrix} 0& 0& 0\\ 0& 0& -18\\ 6& 1& 0\\ \end{matrix} \right] A1=6001860000,B1=0060010180
C 1 = [ 0 0 0 0 0 0 1 0 0 ] , D 1 = [ 0 0 − 2 a − 18 0 0 0 0 0 ] C_1=\left[ \begin{matrix} 0& 0& 0\\ 0& 0& 0\\ 1& 0& 0\\ \end{matrix} \right] ,D_1=\left[ \begin{matrix} 0& 0& -2a\\ -18& 0& 0\\ 0& 0& 0\\ \end{matrix} \right] C1=001000000,D1=01800002a00
第二个混沌系统的雅可比矩阵 J 2 J_2 J2
J 1 = [ − 6 18 2 a z − 18 z − 6 − 18 x 6 x + y x 0 ] = A 2 + x B 2 + y C 2 + z D 2 J_1=\left[ \begin{matrix} -6& 18& 2az\\ -18z& -6& -18x\\ 6x+y& x& 0\\ \end{matrix} \right] =A_2+xB_2+yC_2+zD_2 J1=618z6x+y186x2az18x0=A2+xB2+yC2+zD2

A 1 = [ − 6 18 0 0 − 6 0 0 0 0 ] , B 1 = [ 0 0 0 0 0 − 18 6 1 0 ] A_1=\left[ \begin{matrix} -6& 18& 0\\ 0& -6& 0\\ 0& 0& 0\\ \end{matrix} \right] ,B_1=\left[ \begin{matrix} 0& 0& 0\\ 0& 0& -18\\ 6& 1& 0\\ \end{matrix} \right] A1=6001860000,B1=0060010180
C 1 = [ 0 0 0 0 0 0 1 0 0 ] , D 2 = [ 0 0 2 a − 18 0 0 0 0 0 ] C_1=\left[ \begin{matrix} 0& 0& 0\\ 0& 0& 0\\ 1& 0& 0\\ \end{matrix} \right] ,D_2=\left[ \begin{matrix} 0& 0& 2a\\ -18& 0& 0\\ 0& 0& 0\\ \end{matrix} \right] C1=001000000,D2=01800002a00
第一个混沌系统的散度 ∇ V 1 \nabla V_1 V1被定义为
∇ V 1 = ∂ x ˙ ∂ x + ∂ y ˙ ∂ y + ∂ z ˙ ∂ z = t r ( J 1 ) = − 12 \nabla V_1=\frac{\partial \dot{x}}{\partial x}+\frac{\partial \dot{y}}{\partial y}+\frac{\partial \dot{z}}{\partial z}=tr\left( J_1 \right) =-12 V1=xx˙+yy˙+zz˙=tr(J1)=12
第二个混沌系统的散度 ∇ V 2 \nabla V_2 V2被定义为
∇ V 2 = ∂ x ˙ ∂ x + ∂ y ˙ ∂ y + ∂ z ˙ ∂ z = t r ( J 2 ) = − 12 \nabla V_2=\frac{\partial \dot{x}}{\partial x}+\frac{\partial \dot{y}}{\partial y}+\frac{\partial \dot{z}}{\partial z}=tr\left( J_2 \right) =-12 V2=xx˙+yy˙+zz˙=tr(J2)=12
其中 t r ( J i ) tr(J_i) tr(Ji)表示矩阵 J i J_i Ji的迹, i = 1 , 2 i=1,2 i=1,2
通过比较第一个混沌系统的散度和第二个混沌系统的散度,有
∇ V 1 = ∇ V 2 < 0 \nabla V_1=\nabla V_2<0 V1=V2<0
因此,两个混沌镜像系统具有相同的散度,它们均是耗散的。
当参数 a = 3 a=3 a=3时和初始条件 ( x 0 , y 0 , z 0 ) = ( 1 , 1 , 1 ) (x_0,y_0,z_0)=(1,1,1) (x0,y0,z0)=(1,1,1),第一个系统的三个Lyapunov指数是 L E 1 = 3.415 , L E 2 = 0 LE_1=3.415,LE_2=0 LE1=3.415,LE2=0 L E 3 = − 15.42 LE_3=-15.42 LE3=15.42如下图所示。相应的Lyapunov维数是 D K Y = 2.2 D_{KY}=2.2 DKY=2.2
在这里插入图片描述

当参数 a = 3 a=3 a=3时和初始条件 ( x 0 , y 0 , z 0 ) = ( − 1 , − 1 , 1 ) (x_0,y_0,z_0)=(-1,-1,1) (x0,y0,z0)=(1,1,1),第二个系统的三个Lyapunov指数是 L E 1 = 3.415 , L E 2 = 0 LE_1=3.415,LE_2=0 LE1=3.415,LE2=0 L E 3 = − 15.42 LE_3=-15.42 LE3=15.42如下图所示。相应的Lyapunov维数是 D K Y = 2.2 D_{KY}=2.2 DKY=2.2
在这里插入图片描述

通过分别比较Lyapunov指数和Lyapunov维数的值,因此,具有对称的单参数混沌镜像系统具有相同的Lyapunov指数,它们生成的两个对称混沌吸引子具有相同的Lyapunov维数。
显然,两个系统的最大Lyapunov指数是正的,因此,两个系统均是混沌系统。

3. 基于切换控制的两个对称混沌吸引子的连接

为了连接两个对称混沌吸引子,本节提出了一个新的切换控制方法。
通过简单的观测这两个混沌系统的混沌吸引子数值仿真图可以看出,两个对称混沌吸引子存在一个公共区域,在三维空间中,选取一个切换平面 S S S如下:
S : b x + c y = 0 S:bx+cy=0 S:bx+cy=0
所设计的切换平面 S S S应该穿越公共区域。
设计平面切换律如下:
σ = { 1 ,   i f   b x + c y > 0 2 ,   o t h e r \sigma =\left\{ \begin{array}{l} 1,\ if\ bx+cy>0\\ 2,\ other\\ \end{array} \right. σ={1, if bx+cy>02, other
其中, σ \sigma σ是依赖于系统状态的切换信号。
b x + c x > 0 bx+cx>0 bx+cx>0,第一个混沌系统被激活,否则,第二个混沌系统被激活。

当选取一系列适当的参数时,两个对称混沌吸引子能够被有效的连接成为一个新的对称混沌吸引子。

当对称参数 a = 3 a=3 a=3和初始条件 ( x 0 , y 0 , z 0 ) = ( 1 , 1 , 1 ) (x_0,y_0,z_0)=(1,1,1) (x0,y0,z0)=(1,1,1),取 b = − 5 , c = 1 b=-5,c=1 b=5,c=1,所设计平面切换律如下:
σ = { 1 ,   i f   − 5 x + y > 0 2 ,   o t h e r \sigma =\left\{ \begin{array}{l} 1,\ if\ -5x+y>0\\ 2,\ other\\ \end{array} \right. σ={1, if 5x+y>02, other
两个对称混沌吸引子能够被有效的连接成为一个新的对称混沌吸引子。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值