Lyapunov判稳第一法

本文详细介绍了线性系统(定常、离散、时变)的稳定性分析,包括特征值判断、状态转移矩阵的性质,并探讨了非线性系统通过Taylor展开分析平衡态稳定性的方法。主要关注内部稳定性和外部(输入输出)稳定性,并提供了具体的系统实例进行解析。
摘要由CSDN通过智能技术生成

Lyapunov判稳第一法(First Method)是利用齐次状态方程解的特性判断系统的内部稳定性,适用于线性定常、线性时变、线性离散以及可线性化的非线性系统。经典控制理论中关于线性系统稳定性的判别都可以看作是Lyapunov判稳第一法的工程应用。

线性定常系统的稳定性分析

  1. 线性定常连续系统稳定性的特征值判断依据
    定理1 线性定常连续系统 x ˙ = A x \dot{x}=Ax x˙=Ax的零平衡状态 x e = 0 x_e=0 xe=0,是渐近平稳的充分必要条件是: A A A的所有特征值(Eigenvalue)具有负实部(Negative Real Part)。
    渐近稳定考虑的是系统输入零响应,属于内部稳定性,又称之为状态稳定性。与此相对应的即为系统外部稳定性,即输入输出稳定(BIBO稳定性)考虑的是系统的零状态响应,其充分必要条件是 W ( s ) W(s) W(s)的所有极点具有负实部。
    例1. 判断系统的渐近稳定性和输入输出稳定性。 A = [ 2 0 0 − 3 ] , b = [ 1 1 ] , c = [ 0 1 ] A=\left[ \begin{matrix} 2& 0\\ 0& -3\\ \end{matrix} \right] ,b=\left[ \begin{array}{c} 1\\ 1\\ \end{array} \right] ,c=\left[ \begin{matrix} 0& 1\\ \end{matrix} \right] A=[2003],b=[11],c=[01]
    解: 根据特征值的实部,判断系统状态 x 1 x_1 x1不稳定。
    y = c x = [ 0 1 ] [ x 1 x 2 ] = x 2 y=cx=\left[ \begin{matrix} 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] =x_2 y=cx=[01][x1x2]=x2 lim ⁡ t → ∞ y ( t ) = 0 \underset{t\rightarrow \infty}{\lim}y\left( t \right) =0 tlimy(t)=0
    系统的输出稳定,即外部具有稳定性。系统的传递函数必然有零点对消。
    例2. 判断系统的渐近稳定性和输入输出稳定性。
    A = [ 0 6 1 − 1 ] , b = [ − 2 1 ] , c = [ 0 1 ] A=\left[ \begin{matrix} 0& 6\\ 1& -1\\ \end{matrix} \right] ,b=\left[ \begin{array}{c} -2\\ 1\\ \end{array} \right] ,c=\left[ \begin{matrix} 0& 1\\ \end{matrix} \right] A=[0161],b=[21],c=[01]
    解: (1)外部具有稳定性(输入输出稳定性)
    W ( s ) = c ( s I − A ) − 1 b = [ 0 1 ] [ s − 6 − 1 s + 1 ] [ − 2 1 ] W\left( s \right) =c\left( sI-A \right) ^{-1}b=\left[ \begin{matrix} 0& 1\\ \end{matrix} \right] \left[ \begin{matrix} s& -6\\ -1& s+1\\ \end{matrix} \right] \left[ \begin{array}{c} -2\\ 1\\ \end{array} \right] W(s)=c(sIA)1b=[01][s16s+1][21] = [ 0 1 ] [ s − 6 1 s ] ( s + 3 ) ( s − 2 ) [ − 2 1 ] = [ 1 s ] [ − 2 1 ] ( s + 3 ) ( s − 2 ) =\left[ \begin{matrix} 0& 1\\ \end{matrix} \right] \frac{\left[ \begin{matrix} s& -6\\ 1& s\\ \end{matrix} \right]}{\left( s+3 \right) \left( s-2 \right)}\left[ \begin{array}{c} -2\\ 1\\ \end{array} \right] =\frac{\left[ \begin{matrix} 1& s\\ \end{matrix} \right] \left[ \begin{array}{c} -2\\ 1\\ \end{array} \right]}{\left( s+3 \right) \left( s-2 \right)} =[01](s+3)(s2)[s16s][21]=(s+3)(s2)[1s][21] = s − 2 ( s + 3 ) ( s − 2 ) = 1 s + 3 =\frac{s-2}{\left( s+3 \right) \left( s-2 \right)}=\frac{1}{s+3} =(s+3)(s2)s2=s+31极点 − 3 -3 3具有负实部,是输入输出稳定的。
    (2) 内部稳定性分析,
    ∣ λ I − A ∣ = [ λ − 6 − 1 λ + 1 ] = λ 2 + λ − 6 = ( λ − 2 ) ( λ + 3 ) \left| \lambda I-A \right|=\left[ \begin{matrix} \lambda& -6\\ -1& \lambda +1\\ \end{matrix} \right] =\lambda ^2+\lambda -6=\left( \lambda -2 \right) \left( \lambda +3 \right) λIA=[λ16λ+1]=λ2+λ6=(λ2)(λ+3)
    系统渐近非稳定,但输入输出稳定。因为存在零极点对消,消掉了具有正实部的特征值 λ = 2 \lambda =2 λ=2
  2. 线性离散系统稳定性分析
    定理2. 线性定常离散系统 x ( k + 1 ) = G x ( k ) x(k+1)=Gx(k) x(k+1)=Gx(k)的零平衡状态 x e x_e xe是渐近稳定的充分必要条件是:系统矩阵 G G G的所有特征值的模全部位于根平面的单位圆内,即
    ∣ λ i ∣ < 1 , i = 1 , 2 , 3...... \left| \lambda _i \right|<1,i=1,2,3...... λi<1,i=1,2,3......

线性时变系统的稳定性分析

对于线性时变系统,同样具有两种方法判断系统平衡状态的稳定性,即基于状态转移的方法与基于Lyapunov判断依据的判断方法。
假设线性系统为:
x ˙ = A ( t ) x \dot{x}=A(t)x x˙=A(t)x
系统的平衡状态为 x e = 0 x_e=0 xe=0,状态方程的解为
x ( t ) = ϕ ( t , t 0 ) x ( t 0 ) , t ≥ t 0 ≥ 0 x\left( t \right) =\phi \left( t,t_0 \right) x\left( t_0 \right) ,t\ge t_0\ge 0 x(t)=ϕ(t,t0)x(t0),tt00
若有 lim ⁡ t → ∞ ∥ ϕ ( t , t 0 ) ∥ = 0 \underset{t\rightarrow \infty}{\lim}\lVert \phi \left( t,t_0 \right) \rVert =0 tlimϕ(t,t0)=0
lim ⁡ t → ∞ x ( t ) = 0 \underset{t\rightarrow \infty}{\lim}x\left( t \right) =0 tlimx(t)=0必然成立,系统的平衡状态 x e = 0 x_e=0 xe=0在时刻 t 0 t_0 t0是渐近稳定的。
线性时变系统稳定性的相关结论如下:
(1). ∥ ϕ ( t , t 0 ) ∥ ≤ β ( t 0 ) , ∀ t ≥ t 0 , ∀ t 0 , 0 < β ( t 0 ) < ∞ , β ( t 0 ) 是依赖于 t 0 的实数,则系统稳定; \lVert \phi \left( t,t_0 \right) \rVert \le \beta \left( t_0 \right) ,\forall t\ge t_0,\forall t_0,0<\beta \left( t_0 \right) <\infty ,\beta \left( t_0 \right) \text{是依赖于}t_0\text{的实数,则系统稳定;} ϕ(t,t0)β(t0),tt0,t0,0<β(t0)<,β(t0)是依赖于t0的实数,则系统稳定;(2). ∥ ϕ ( t , t 0 ) ∥ ≤ β , ∀ t ≥ t 0 , ∀ t 0 , 0 < β < ∞ , β 是独立的实数,则系统一致稳定; \lVert \phi \left( t,t_0 \right) \rVert \le \beta ,\forall t\ge t_0,\forall t_0,0<\beta <\infty ,\beta \text{是独立的实数,则系统一致稳定;} ϕ(t,t0)β,tt0,t0,0<β<,β是独立的实数,则系统一致稳定;(3). ∥ ϕ ( t , t 0 ) ∥ → 0 , t → ∞ , ∀ t 0 , 则系统渐近稳定; \lVert \phi \left( t,t_0 \right) \rVert \rightarrow 0,t\rightarrow \infty ,\forall t_0,\text{则系统渐近稳定;} ϕ(t,t0)0,t,t0,则系统渐近稳定;(4). ∥ ϕ ( t , t 0 ) ∥ ≤ β e − c ( t − t 0 ) , ∀ t ≥ t 0 , ∀ t 0 , c > 0 , β > 0 , 则系统一致渐近稳定。 \lVert \phi \left( t,t_0 \right) \rVert \le \beta e^{-c\left( t-t_0 \right)},\forall t\ge t_0,\forall t_0,c>0,\beta >0,\text{则系统一致渐近稳定。} ϕ(t,t0)βec(tt0),tt0,t0,c>0,β>0,则系统一致渐近稳定。

非线性系统的稳定性分析

由于非线性系统的可能存在多个平衡态,而且每一个平衡态的稳定性可能不同,因此,需要对非线性系统的每个平衡态分别研究。
假设一非线性系统为: x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x)
n n n维状态向量函数 f ( x ) f(x) f(x) x x x有连续的偏导数存在时,可将非线性向量函数 f ( x ) f(x) f(x)在平衡状态 x e x_e xe附近展开(Expand)为 t a y l o r taylor taylor级数。
x ˙ = f ( x ) = f ( x ) ∣ x e + ∂ f ∂ x T ∣ x e ( x − x e ) + Δ ( x ) \dot{x}=f\left( x \right) =f\left( x \right) \left| x_e+\frac{\partial f}{\partial x^T}\left| x_e\left( x-x_e \right) +\varDelta \left( x \right) \right. \right. x˙=f(x)=f(x)xe+xTfxe(xxe)+Δ(x) ∂ f ∂ x = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 . . . ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 . . . ∂ f 2 ∂ x n . . . . . . . . . . . . ∂ f n ∂ x 1 ∂ f n ∂ x 2 . . . ∂ f n ∂ x n ] n × n \frac{\partial f}{\partial x}=\left[ \begin{matrix} \frac{\partial f_1}{\partial x_1}& \frac{\partial f_1}{\partial x_2}& ...& \frac{\partial f_1}{\partial x_n}\\ \frac{\partial f_2}{\partial x_1}& \frac{\partial f_2}{\partial x_2}& ...& \frac{\partial f_2}{\partial x_n}\\ ...& ...& ...& ...\\ \frac{\partial f_n}{\partial x_1}& \frac{\partial f_n}{\partial x_2}& ...& \frac{\partial f_n}{\partial x_n}\\ \end{matrix} \right] _{n\times n} xf=x1f1x1f2...x1fnx2f1x2f2...x2fn............xnf1xnf2...xnfnn×n
其中 ∂ f ∂ x \frac{\partial f}{\partial x} xf称为雅克比(Jacobian)矩阵, Δ ( x ) \varDelta \left( x \right) Δ(x) T a y l o r Taylor Taylor展开式中的二次以上的高次项。

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值