基于知识图谱的图神经网络推理

基于知识图谱的图神经网络推理 - 知乎导读 本次分享题目为基于知识图谱的图神经网络推理,首先会介绍知识图谱相关的背景。第二部分GNN for KG会以CompGCN为基础,介绍将图神经网络迁移到知识图谱上面的工作。第三部分主要介绍针对知识图谱所设计的GNN…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/647114494

基于图神经网络的高效知识图谱推理技术_哔哩哔哩_bilibili个人简介:张永祺博士于2020年加入第四范式科学技术部,现担任算法科学家,负责机器学习和知识图谱相关的研究工作。工作期间他开展了多个知识图谱学习相关工作,在链接预测、实体对齐等任务基线上达到国际领先水平,取得大规模生物知识图谱预测任务ogbl-biokg第一名的成绩,并以第一作者在TPAMI, VLDB Journal, KDD, NeurIPS, WWW, ACL等人工智能领域顶级会议期刊发表1, 视频播放量 4734、弹幕量 0、点赞数 152、投硬币枚数 64、收藏人数 492、转发人数 60, 视频作者 LOGS图学习研讨会, 作者简介 欢迎关注 微信公众号:logs_101,相关视频:GPT接入Neo4j知识图谱,实现精准知识问答,【浙江大学】知识图谱导论,玩转Neo4j知识图谱和图数据挖掘,B站强推!这可能是唯一能将知识图谱讲明白的教程了,不愧是清华教授,半天时间将入门原理到项目实战全部教完!还学不会速来打我!人工智能|神经网络|机器学习,【知识图谱&多模态】2023最好创新的研究方向!从原理推导到项目实战!一天就能学会!——人工智能|AI|多模态|知识图谱|机器学习|深度学习|计算机视觉,再说说知识图谱是干啥用的(几个应用案例),Llama2 Langchain 将text文本可视化为知识图谱并可基于图谱问答,【精读AI论文】知识蒸馏,LangChain 2 ONgDB:大模型+知识图谱实现领域知识问答,基于知识图谱+图注意力网络的推荐模型(KGAT)icon-default.png?t=N7T8https://www.bilibili.com/video/BV1EP411p7fP/?spm_id_from=333.337.search-card.all.click&vd_source=feb9b626f23d0b3640d7a9b47b280fc2 

 

 

 

 

 

 

 

淡黄色:f子图  阴影:b子图       又有黄色又有阴影:共同的部分

 

 

### 图神经网络知识图谱简介 #### 什么是图神经网络图神经网络(GNNs)是一种专门用于处理图形数据结构的深度学习模型[^1]。这些模型能够捕捉节点之间的复杂关系,并通过消息传递机制来更新节点表示。这种特性使得GNNs非常适合于社交网络分析、推荐系统以及分子化学等领域。 #### 基础数学概念和图理论 为了更好地理解GNN的工作原理,掌握一些基本的数学工具是非常重要的。这包括但不限于线性代数中的矩阵运算、概率统计的基础知识以及图论的核心概念如邻接矩阵、度分布等。这些基础知识有助于深入理解如何构建有效的特征提取器并设计合理的损失函数来进行训练优化过程。 #### 注意力机制的应用 在传统的GNN架构基础上引入注意力机制可以进一步提升性能表现。具体来说,在计算过程中为每一个邻居分配不同的重要程度得分——即所谓的“注意分数”,从而让模型更加关注那些对于当前任务更为关键的信息源[^2]。这种方法不仅提高了表达能力还增强了可解释性。 #### 实践案例:基于TensorFlow实现简单GNN 下面给出一段简单的Python代码片段展示怎样利用TensorFlow框架搭建一个两层全连接型别的GNN: ```python import tensorflow as tf def build_gnn_model(input_dim, hidden_units): model = tf.keras.Sequential([ tf.keras.layers.Dense(hidden_units[0], activation='tanh', input_shape=(input_dim,)), tf.keras.layers.Dense(hidden_units[1], activation='tanh'), tf.keras.layers.Dense(1) # 输出层无激活函数 ]) return model ``` 此段代码定义了一个具有两个隐藏层且采用双曲正切作为激活单元的小型前馈神经网路;最后一层则不应用任何非线性变换以便直接输出预测值[^3]。 #### 关系到知识图谱 当我们将上述技术应用于大规模的知识库时就形成了所谓“知识图谱”。它本质上是一个由实体及其相互间语义关联构成的巨大有向加权图。借助GNN的强大表征学习能力可以帮助我们更高效地挖掘潜在模式、推理未知链接甚至辅助决策支持系统的设计开发等工作当中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值