基变换(视频见b站)

本文在于快速get核心点,视频请见:

【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=13

 (图1,04:22)

(图2 02:38)

先从例子入手,现在有2个坐标系,图1的坐标系和图2的坐标系。

图1的直角坐标系设为标准坐标系,基向量为\vec{a_{1}}=\begin{bmatrix} 1\\0 \end{bmatrix}\vec{b_{1}}=\begin{bmatrix} 0\\1 \end{bmatrix}

图2的基向量在图2的坐标系自然也是\vec{a_{2}}=\begin{bmatrix} 1\\0 \end{bmatrix}\vec{b_{1}}=\begin{bmatrix} 0\\1 \end{bmatrix},但是在图1的坐标系中为{\vec{a_{2}}}'=\begin{bmatrix} 2\\1 \end{bmatrix}{\vec{b_{2}}}'=\begin{bmatrix} -1\\-1 \end{bmatrix}(不管带不带撇,都是同一个向量,因为起终点没有变,只是坐标系变了从而表示方法变了)


图2坐标系2中比如一个向量\vec{k}=-1\vec{a_{2}}+2\vec{b_{2}}=\begin{bmatrix} -1\\2 \end{bmatrix}这里仅从坐标系2出发,不涉及坐标系1中的\begin{bmatrix} -1\\2 \end{bmatrix}),那么在图1坐标系1中表示为{\vec{k}}'=-1{\vec{a_{2}}}'+2{\vec{b_{2}}}' =\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}\begin{bmatrix} -1\\2 \end{bmatrix} =\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}\vec{k} =\begin{bmatrix} -4\\1 \end{bmatrix}{\vec{k}}',\vec{k}是表示方式不同的同一向量



【总结重点】对{\vec{k}}'=\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}\vec{k}中的\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}有2种看法

1.{\vec{k}}',\vec{k}为放在图1的直角坐标系({\vec{k}}',\vec{k}虽为同一向量,但\begin{bmatrix} -1\\2 \end{bmatrix}同样可在坐标1中找到\vec{l}=\begin{bmatrix} -1\\2 \end{bmatrix})。{\vec{k}}'=\begin{bmatrix} -4\\1 \end{bmatrix}可以看作是由\vec{l}=\begin{bmatrix} -1\\2 \end{bmatrix}在坐标系内旋转得到的({\vec{k}}'=\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}\vec{k}中只涉及坐标运算,与哪个向量没有关系,故等式中将\vec{l}看作\vec{k})。可见\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}表示坐标系内的变换矩阵

2.\vec{k}放在图2的坐标系2,{\vec{k}}'放在图1的直角坐标系1。\vec{k}同时可以看作图2坐标系基向量\begin{bmatrix} \vec{a_{2}} & \vec{b_{2}} \end{bmatrix}表示的的\begin{bmatrix} -1\\2 \end{bmatrix}。因此\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}可以看作是坐标系间的变换矩阵

【结合来看】变换矩阵\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}其实就是直角坐标系的一个向量\vec{l}变换成另一个向量​​​​​​​{\vec{k}}',而​​​​​​​{\vec{k}}'在以 {\vec{a_{2}}}',{\vec{b_{2}}}'为基向量的坐标系中\vec{k}的坐标与\vec{l}坐标相同。



为了更见形象地理解,分为三种状态(向量只与起终点有关,与坐标系无关,不同坐标系起点均重合于原点):

(1)坐标系1下的向量1

(2)坐标系1下的向量2

(3)坐标系2下的向量2 

(1)->(2):左乘变换矩阵\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}的作用是坐标系不变,位置改变

(3)->(2): 左乘变换矩阵\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}的作用是位置不变,坐标系改变(且变换矩阵的列为旧坐标系的基向量,此处为坐标系2的基向量)(\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}中向量为基向量,该矩阵rank=2,也就是说输入一个二维空间会输出一个二维空间)



应用以上结论:

依然是这两个坐标系

图1的直角坐标系设为标准坐标系,基向量为\vec{a_{1}}=\begin{bmatrix} 1\\0 \end{bmatrix}\vec{b_{1}}=\begin{bmatrix} 0\\1 \end{bmatrix}

图2的基向量在图2的坐标系自然也是\vec{a_{2}}=\begin{bmatrix} 1\\0 \end{bmatrix}\vec{b_{1}}=\begin{bmatrix} 0\\1 \end{bmatrix},但是在图1的坐标系中为{\vec{a_{2}}}'=\begin{bmatrix} 2\\1 \end{bmatrix}{\vec{b_{2}}}'=\begin{bmatrix} -1\\-1 \end{bmatrix}


现在有一个矩阵将\vec{a_{1}}=\begin{bmatrix} 1\\0 \end{bmatrix}\vec{b_{1}}=\begin{bmatrix} 0\\1 \end{bmatrix}逆时针旋转90度,显然这个线性变换旋转矩阵为R=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix},那么相应地坐标系2该怎么变?(另设A=\begin{bmatrix} {\vec{a_{2}}}' & {\vec{b_{2}}}' \end{bmatrix}

坐标系的变化用其中的一个向量即可模拟,设坐标系2有一个向量\vec{p},由于是坐标系1旋转,我们先把\vec{p}变成坐标系1下的向量(向量本身没变,只是坐标系变了)为A\vec{p},然后再旋转得RA\vec{p},然后转为坐标系2,得A^{-1}RA\vec{p}即坐标系1得变换矩阵为R,坐标系2的变换矩阵为A^{-1}RA

 【注】此时坐标系2也会逆时针旋转90度,因为变换矩阵A不会改变向量位置,只有变换矩阵R会改变。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值