《Microscopic Three-Dimensional Measurement Based on Telecentric Stereo and Speckle Projection Methods》
摘要:微结构的三维测量日益重要,许多微观测量方法已经发展起来。对于几毫米以内的尺寸以及亚像素或亚微米级的精度,目前几乎没有有效的测量方法。本文提出了一种将显微立体测量与数字散斑投影相结合的方法。建立了由两台远心摄像机和一个工业投影模块组成的显微实验装置,实现了远心双目立体重建。首先通过对不同位置的栅极阵列和高差不同的圆柱阵列进行三维测量,验证了测量精度。然后两个Mitutoyo步法师已被用于进一步的验证。实验结果表明,该方法可以获得亚像素乃至亚微米级毫米尺度微结构的三维信息。
关键词: 显微测量;立体视觉;远心照相机;散斑投影
1.引言
随着微机电系统(MEMS)的发展,微结构的三维测量变得越来越重要。大多数微结构的尺寸从几微米到几厘米不等。它们的三维信息,特别是高度,必须被测量,为此已经开发了许多测量方法。其中,非接触光学方法以其非破坏性、灵活性和高效率等优点得到了广泛的应用。一些测量方法,如数字全息照相术[3],共聚焦显微镜干涉法[4],白光干涉法[5]和光纤探针法[6-8]等,可以达到亚微米甚至纳米尺度的测量精度,而它们的测量范围是亚毫米、微米或亚微米尺度。
相反,显微条纹投影法被广泛研究,适用于测量尺寸为毫米及以上的微结构,测量精度在几微米至几十微米[9-11]之间。它可以很好地实现不同表面微结构的三维测量,如量块[12]、球栅阵列(BGA)[13,14]、硬币[15,16]、晶片[17]、耳机膜片[18]和台阶母片[19],还可以进行动态测量[20,21]。由于缺乏适当的系统校准方法和从测量相位中去除载波相位分量[22],其测量精度很难达到2或3微米及以下。同时,通过改变显微物镜的物镜尺寸,利用显微立体测量方法可以获得不同的测量范围和精度,从而实现对不同尺寸和精度要求的微结构的三维测量。这些结果取决于测量环境(特别是照明条件)和被测物体。对于表面没有明显特征的微结构,很难获得准确的三维测量结果。为了提高测量的鲁棒性,可以在单调微结构的表面上人工生成随机散斑形式的图案[24]。传统的在微表面上制造图案的方法主要是喷涂粉末[25-27]或荧光微粒[28,29],沉积康铜合金[30]和产生激光散斑[31-33]。对于样品来说,它们是复杂的、几乎不可逆的,微粒子可能对三维测量产生一定的影响。一种利用投影仪投射数字散斑图的方法可以方便地在表面上创建随机特征而不影响样品,并已应用于许多宏观领域,以实现对简单形状[34]、人脸[35]、Venus模型[36]、人体[37]、复杂形状掩模[38]和不同类型表面的三维测量。然而,这种散斑投影方法在显微镜领域中很少使用。
此外,几乎所有的显微立体测量系统都使用针孔微透镜作为测量探针,因为它们的视场和放大率范围很大,而且视场深度很小。这些微透镜的自由度和分辨率是相互约束的。它不足以测量完整的微结构深度[13]。相反,由于独特的仿射成像特性,远心镜头(包括像面、物面和双远心镜头)可以在保持高分辨率的同时将自由度扩展到毫米。然而,远心透镜很少用于双目立体显微镜的三维微结构测量,除了对准光学纤维[43]。
有鉴于此,我们提出了一种将微观远心立体测量与数字随机散斑投影相结合的方法,以高精度获得微观结构的3D信息。用双远心镜头和电荷耦合器件(CCD)组装了两个相同的单色相机,并用作图像传感器(像素大小:3.45 µm×3.45 µm)来捕获微结构的图像。首先通过对不同位置的网格阵列和具有不同高度差的圆柱阵列进行3D测量,来验证已建立设置的测量精度。然后,使用两个三丰步骤大师进行进一步验证。实验结果证明,该方法至少可以获得亚像素(圆柱阵列,最大1.40 µm,0.40像素大小)甚至亚微米(网格阵列和步骤主控,最大0.83 µm)精度的微结构3D信息。横向测量范围为3.5 mm×4.2 mm,纵向测量范围为0.6 mm
2. 测量原理
2.1 远心立体声测量
双远心镜头已被详细研究[41,44]。它与CCD组合在一起,形成了一个双远心相机,实际上可以在模型上进行平行投影:
其中,m是双远心镜头的放大倍数(也是固有参数); (Su,Sv)是传感器坐标方向上的比例因子,单位为度量单位长度/像素(通常由传感器制造商提供); (u0,v0)是像素系统中图像系统原点的坐标,即像素中主要点的坐标(通常作为图像中心);截断矩阵R0 = [r11,r12,r13; r21,r22,r23]和截断向量T = [tx; [ty]分别是旋转矩阵的前两行和平移矢量,并且都是外部参数。
[45]中提出的模型。然后,我们将投影模型中的内在和外在矩阵相乘,得到:模型在[45]中提出。然后我们将投影模型中的内在矩阵和外在矩阵相乘并得到:
2.2 基于灰度的全局匹配方法
为了实现微观结构的3D尺寸的测量,采用了基于灰度的全局匹配方法[46]。使用一种模板匹配方法来最小化一个图像(模板)中的(2wm + 1)×(2wn + 1)像素内核与另一幅图像中的置换副本之间的灰度值差异,以确定最可能的匹配点,其中wm和wn分别是像素坐标系中行和列方向上的像素数。考虑到左右图像之间的照度变化,采用零均值归一化平方差(ZNSSD)[24]匹配标准:
5 结论
在本文中,我们提出了一种结合微观远心立体声测量和数字散斑投影的方法来实现微结构的3D测量的方法。建立了包含两个相同的远心相机的实验装置。工业DLP投影模块用于投影数字随机斑点图案并充当照明器。基于改进的仿射模型对用作图像传感器的两个远心相机进行了校准,以获取内部和外部参数。然后介绍了远心双目立体重建算法和基于灰度的全局匹配方法。首先通过对不同位置的网格阵列和具有不同高度差的圆柱阵列进行3D测量来验证测量精度。两个三丰步大师还被用来验证可行性和测量准确性。实验结果证明,我们的设置与所提出的方法相结合,能够获得具有亚像素(圆柱阵列最大1.40 µm,像素大小0.40)甚至亚微米(网格阵列最大0.42 µm)的微观结构的3D信息。和0.83 µm(步进式),以毫米为单位测量精度。