SOTA
SOTA,是 State Of The Art 的缩写。
SOTA model:state-of-the-art model,指在该项研究任务中,目前最好或最先进的模型,并不是特指某个具体的模型。
SOTA result:state-of-the-art result,指在该项研究任务中,目前最好模型的结果或性能或表现。
FPS
FPS,是 Frames Per Second 的缩写。
更高的帧率并不意味着更高的视频质量。但是,使用高帧率的摄像机可以获得更流畅的视频。
60 FPS的帧数是 30 FPS素材的两倍。相比30 FPS,以 60 FPS 的速度拍摄可以更加流畅和清晰。每秒 60 帧可以显示复杂的细节,适用于慢动作视频,而每秒 30 帧则适合电视节目、新闻和体育节目。
SSIM
SSIM,是 structural similarity index 的缩写。
结构相似性指数(SSIM)是一种用于量化两幅图像间的结构相似性的指标。与L2损失函数不同,SSIM仿照人类的视觉系统(Human Visual System,HVS)实现了结构相似性的有关理论,对图像的局部结构变化的感知敏感。SSIM从亮度、对比度以及结构量化图像的属性,用均值估计亮度,方差估计对比度,协方差估计结构相似程度。SSIM值的范围为0至1,越大代表图像越相似。如果两张图片完全一样时,SSIM值为1。
PSNR
PSNR,是 Peak Signal to Noise Ratio 的缩写。
峰值信噪比(PSNR)是一种评价图像质量的度量标准。PSNR具有局限性,只是衡量最大值信号和背景噪音之间的图像质量参考值。PSNR单位为dB,其值越大,图像失真越少。
PSNR高于40dB,说明图像质量几乎与原图一样好。
在30至40dB间,说明图像质量的失真损失在可接受范围内。
在20至30dB间,说明图像质量比较差。
PSNR低于20dB,说明图像失真严重。
LPIPS
LPIPS,是 Learned Perceptual Image Patch Similarity 的缩写。
学习感知图像块相似度(LPIPS)也称为“感知损失”(perceptual loss),用于度量两张图像之间的差别。该度量标准学习生成图像到Ground Truth的反向映射强制生成器学习从假图像中重构真实图像的反向映射,并优先处理它们之间的感知相似度。LPIPS 比传统方法(比如:L2/PSNR, SSIM, FSIM)更符合人类的感知情况。LPIPS的值越低表示两张图像越相似,反之,则差异越大。