keras中的函数式API——残差连接+权重共享的理解

1、残差连接

# coding: utf-8
"""残差连接 residual connection:
   是一种常见的类图网络结构,解决了所有大规模深度学习的两个共性问题:
                           1、梯度消失
                           2、表示瓶颈
                           (甚至,向任何>10层的神经网络添加残差连接,都可能会有帮助)

    残差连接:让前面某层的输出作为后面某层的输入,从而在序列网络中有效地创造一条捷径。
              """

from keras import layers


x = ...
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)

y = layers.add([y, x]) # 将原始x与输出特征相加

# ---------------------如果特征图尺寸不同,采用线性残差连接-------------------
x = ...
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.MaxPooling2D(2, strides=2)(y)

residual = layers.Conv2D(128, 1, strides=2, padding='same')(x) # 使用1*1的卷积,将原始张量线性下采样为y具有相同的形状

y = layers.add([y, residual]) # 将原始x与输出特征相加

2、权重共享

即多次调用同一个实例

# coding: utf-8
"""函数式子API:权重共享
   能够重复的使用同一个实例,这样相当于重复使用一个层的权重,不需要重新编写"""
from keras import layers
from keras import Input
from keras.models import Model


lstm = layers.LSTM(32) # 实例化一个LSTM层,后面被调用很多次

# ------------------------左边分支--------------------------------
left_input = Input(shape=(None, 128))
left_output = lstm(left_input) # 调用lstm实例

# ------------------------右分支---------------------------------
right_input = Input(shape=(None, 128))
right_output = lstm(right_input) # 调用lstm实例

# ------------------------将层进行连接合并------------------------
merged = layers.concatenate([left_output, right_output], axis=-1)

# -----------------------在上面构建一个分类器---------------------
predictions = layers.Dense(1, activation='sigmoid')(merged)

# -------------------------构建模型,并拟合训练-----------------------------------
model = Model([left_input, right_input], predictions)
model.fit([left_data, right_data], targets)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值