Augmenting Knowledge-grounded Conversations with Sequential Knowledge Transition
本文针对知识驱动对话任务提出了两个子任务:知识选择/对话生成

1.知识选择
提出了知识转移的思路,即每轮对话的知识内在也是有联系的

做法:Bert编码历史上下文+BiLSTM建立时序信息+CRF对应知识标签
这个做法有点像任务型对话中的槽填充,"每个token编码后输出槽位值"的做法->“每轮对话的句编码输出知识标签”。
因为知识标签的数量是有限的才能建立这样的状态转移。根据标签去知识库里搜索,如果有很多个这样的标签,再用BM2.5打分,确定得分最高的为该轮知识。
2.对话生成
分为pretraining和finetune两阶段。

2.1pretraining
将知识三元组输入进去,输出是自然语言文本。egs:(梁朝伟,代表作,无间道)->(梁朝伟的代表作是无间道)
作者这样做是想让transformer学习知识三元组对应的自然语言语法结构,而非知识内容本身。
2.2finetune
输入为:知识标签,知识三元组,上下文
输出为:生成回复
(知识三元组的知识标签就是关系边,如果是知识文本,则用LDA模型确定类型)
本文探讨了如何通过Sequential Knowledge Transition增强知识驱动的对话。首先,介绍了一个结合历史上下文和时序信息的知识选择方法,使用BERT和CRF进行知识标签预测。其次,对话生成分为预训练和微调阶段,预训练阶段学习知识三元组的自然语言表达,微调阶段则根据知识标签、三元组和上下文生成回复。
641

被折叠的 条评论
为什么被折叠?



