树木三维点云的预处理流程(传统算法)

文章介绍了使用三维激光扫描仪进行树木扫描,通过ICP算法进行点云配准,然后应用SOR滤波器去除噪声。接着,采用VoxelGrid方法进行点云重采样,以提升处理效率。通过CSF滤波和人工编辑分离地面与树木点云,最后利用mincutsegment算法结合人工编辑进行单木提取,处理树冠重叠情况。
摘要由CSDN通过智能技术生成

自我记录and分享

数据获取与配准

使用三维激光扫描仪,架设自由站从多个角度对树木进行扫描,如图1(a)所示。各站点云,首先人工选取同名点对计算旋转和平移参数,实现粗配准。再利用迭代最近点(Iterative Closest Point,ICP)算法实现自动的精配准,配准点云如图1(b)所示。

在这里插入图片描述

移除噪声

由于仪器本身、悬浮颗粒等原因,获取的三维点云含有大量的噪声,会影响法向量计算、主成分分析等算法的可靠性,使用统计离群点移除(Statistical Outlier Removal,SOR)滤波器去除噪声点。

点云重采样

扫描仪的型号、扫描的距离、扫描的角度、扫描的分辨率等因素,都会影响树木点云的密度。不均匀的点密度会降低算法的稳定性,因此,利用体素化网格(VoxelGrid)方法进行重采样。将点云在空间中划分为等边长的立方体,每个立方体就是一个体素,每个体素中包含的激光点只保留最靠近体素中心的那个点。体素边长即重采样后点云中相邻点的平均间距。

在这里插入图片描述

地面滤波

激光扫描数据中含有大量的地面点,不仅增加了点云处理的运算量,也不利于后续单棵树木的分割。因此,使用布料模拟滤波器(Cloth Simulation Filter,CSF)加上少量的人工编辑将点云分为地面点、非地面点,其中非地面点包含了所有的树木点云。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值