自我记录and分享
数据获取与配准
使用三维激光扫描仪,架设自由站从多个角度对树木进行扫描,如图1(a)所示。各站点云,首先人工选取同名点对计算旋转和平移参数,实现粗配准。再利用迭代最近点(Iterative Closest Point,ICP)算法实现自动的精配准,配准点云如图1(b)所示。
移除噪声
由于仪器本身、悬浮颗粒等原因,获取的三维点云含有大量的噪声,会影响法向量计算、主成分分析等算法的可靠性,使用统计离群点移除(Statistical Outlier Removal,SOR)滤波器去除噪声点。
点云重采样
扫描仪的型号、扫描的距离、扫描的角度、扫描的分辨率等因素,都会影响树木点云的密度。不均匀的点密度会降低算法的稳定性,因此,利用体素化网格(VoxelGrid)方法进行重采样。将点云在空间中划分为等边长的立方体,每个立方体就是一个体素,每个体素中包含的激光点只保留最靠近体素中心的那个点。体素边长即重采样后点云中相邻点的平均间距。
地面滤波
激光扫描数据中含有大量的地面点,不仅增加了点云处理的运算量,也不利于后续单棵树木的分割。因此,使用布料模拟滤波器(Cloth Simulation Filter,CSF)加上少量的人工编辑将点云分为地面点、非地面点,其中非地面点包含了所有的树木点云。