卷积神经网络
CNN中,存在着一个个填充数字的正方形小格子
被称为卷积核

距离:步长
特征图:这层的输出也是下层的输入
训练,根据已有的图片,数字来自动的确定已有的数字
拥有5个卷积层的AlexNet为例
CNN
池化层
能选取图像的主要特征
Maxpooling是保留窗口覆盖区域的最大数值

全连接层
在网络的最后
能够将提取到的特征集合在一起,给出图片可能是某个事物的概率

CNN非常擅长处理图像
卷积神经网络(CNN)通过卷积核进行图像处理,利用步长和填充调整距离。训练过程中,CNN能自动从图像中学习特征。以AlexNet为例,其包含5个卷积层,结合池化层和全连接层,最终输出图像属于各类别的概率。CNN在图像处理任务上表现出色。
卷积神经网络
CNN中,存在着一个个填充数字的正方形小格子
被称为卷积核

距离:步长
特征图:这层的输出也是下层的输入
训练,根据已有的图片,数字来自动的确定已有的数字
拥有5个卷积层的AlexNet为例
CNN
池化层
能选取图像的主要特征
Maxpooling是保留窗口覆盖区域的最大数值

全连接层
在网络的最后
能够将提取到的特征集合在一起,给出图片可能是某个事物的概率

CNN非常擅长处理图像
8万+
282

被折叠的 条评论
为什么被折叠?