卷积神经网络

12 篇文章 0 订阅 ¥59.90 ¥99.00
24 篇文章 1 订阅
卷积神经网络(CNN)通过卷积核进行图像处理,利用步长和填充调整距离。训练过程中,CNN能自动从图像中学习特征。以AlexNet为例,其包含5个卷积层,结合池化层和全连接层,最终输出图像属于各类别的概率。CNN在图像处理任务上表现出色。
摘要由CSDN通过智能技术生成

卷积神经网络

CNN中,存在着一个个填充数字的正方形小格子

被称为卷积核
在这里插入图片描述

距离:步长

特征图:这层的输出也是下层的输入

训练,根据已有的图片,数字来自动的确定已有的数字

拥有5个卷积层的AlexNet为例

CNN

池化层

能选取图像的主要特征

Maxpooling是保留窗口覆盖区域的最大数值

在这里插入图片描述

全连接层

在网络的最后

能够将提取到的特征集合在一起,给出图片可能是某个事物的概率
在这里插入图片描述

CNN非常擅长处理图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值