Dify学习-03-学习Excel_Flask_Dify(生成Excel数据表)笔记(原作者:BannyLon)

强力推荐:https://github.com/langgenius/dify/releases
这也是我自己跟着学的,来源:
https://www.bilibili.com/video/BV1SHwCevEqv/?spm_id_from=333.1387.collection.video_card.click&vd_source=c47fbb8166930edc486d8fdc405bf569

以下是我自己的笔记

使用指南
1、下载文件夹Excel_Flask_Dify到本地任意目录;
2、在Excel_Flask_Dify文件夹上右键单击,选择“服务——新建位于文件夹位置的终端窗口“;
3、在打开的终端命令窗口输入命令:cd Excel_flask_Service;然后执行启动flask服务命令:python3 Excel_flask_Service.py
4、运行dify,在dify中导入 “Dify AI应用:Excel_Flask_Dify.yml” DSL文件,根据flask服务生成的链接地址对应修改http请求节点;然后执行即可。

首先安装环境

我差一个pandas环境
所以安装了

pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

问题1:logging.basicConfig(level=logging.DEBUG) 怎么用?

参考文章
https://blog.csdn.net/colinlee19860724/article/details/90965100

我大致了解就是说多线程的时候print他可能截断,这个Logger就不容易截断
但是我怎么看这个logg呢?

logging.info(‘这是⼀个info级别的⽇志信息’)

看流程

LLM

在这里插入图片描述

首先就是定义嘛,说有多少个条目,之后每个条目有多少个字段
记住:条目和字段!!
之后说具体的要求
最后给一个格式案例


请根据以下描述生成一个包含30个条目的JSON对象,每个条目有六个字段:"姓名""年龄""职业""姓名A""年龄A""职业A"。具体要求如下:

- "姓名"字段应包含30个不同的中国名字。

- "年龄"字段应包含30个介于20到65之间的整数。

- "职业"字段应包含30个常见的职业名称,可以从以下列表中随机选择:"工程师", "医生", "教师", "律师", "设计师", "会计师", "程序员", "科学家", "艺术家", "作家"。

- "姓名A"字段应包含30个不同的中国名字。

- "年龄A"字段应包含30个介于20到65之间的整数。

- "职业A"字段应包含30个常见的职业名称,可以从以下列表中随机选择:"工程师", "医生", "教师", "律师", "设计师", "会计师", "程序员", "科学家", "艺术家", "作家"。


请确保生成的内容是一个单一的、有效的JSON对象,并按照以下格式组织:

```json

{
   

"姓名": ["张三", "李四", "王五", ...], // 30个不同的中国名字

"年龄": [23, 34, 45, ...], // 30个介于20到65之间的整数

"职业": ["工程师", "医生", "教师", ...],  // 30个常见的职业名称

"姓名A": ["张三", "李四", "王五", ...], // 30个不同的中国名字

"年龄A": [23, 34, 45, ...], // 30个介于20到65之间的整数

"职业A": ["工程师", "医生", 
### 使用 Dify 处理 Excel 文件的方法 Dify 是一种强大的工具,能够帮助用户高效地处理和分析 Excel 数据。通过结合 pandas 库的功能以及 Dify 的特性,可以实现从数据读取到可视化的全流程操作。 #### 1. 利用 Pandas 加载 Excel 数据 Pandas 提供了一个简单易用的函数 `pd.read_excel()` 来加载 Excel 文件的内容[^1]。此方法允许指定多个参数以满足不同的需求,例如选择特定的工作表、跳过某些行或者列等。 ```python import pandas as pd # 加载 Excel 文件 file_path = 'data.xlsx' df = pd.read_excel(file_path, sheet_name='Sheet1') print(df.head()) ``` #### 2. 配置 Dify 中的知识库分段参数 当在 Dify 平台上导入 Excel 文件时,为了更好地管理和利用这些数据,可能需要调整文件的分段方式(Chunk)。这一步骤对于提高检索效率至关重要[^3]。可以通过修改知识库配置中的 chunk 参数来完成这一目标。 - **调整 Chunk 参数设置** - 设置合适的大小以便平衡存储空间与查询速度之间的关系。 #### 3. 创建 DSL 工程文件用于自动化流程 如果希望简化整个过程并使其更加便捷,则可以考虑构建一个 DSL (Domain Specific Language) 工程文件[^2]。这种类型的脚本可以直接被导入至项目当中从而快速启动开发环境而无需重复编写基础代码逻辑部分。 #### 4. 实际应用案例——硬编码规则管理 在一个实际应用场景下,“EXCEL大模型”的概念展示了如何将业务上的严格约束条件记录下来并通过程序执行[^4]。这里提到的一个例子就是把所有的强制性规定存放在名为`hard_rules.xlsx`这样的外部表格文档里面并与主应用程序保持同步更新状态。 以上便是关于怎样运用 Dify 对待 Excel 文档的一些基本指导方针及其背后涉及的技术要点概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上Claire

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值