计算机视觉
文章平均质量分 74
AIchiNiurou
cv
展开
-
机器人无人车项目开发学习 上下位机软硬结合python jetson nano ros
pyserialhttps://blog.csdn.net/sinat_39421960/article/details/109209376heiMa stm32 nano SLAM 淘宝nano 串口 GPIO 只有数字信号nano slam视频教程上下位机 ROS通信协议,相当于标志位信号电机、led、蜂鸣器、oled1 rtabmap视觉与激光雷达建图导航CAN:发送接受数据(指令)串口:发送接受数据指令:里程计和IMU传感器数据(加速度角加速度陀螺仪)USB:连接电脑一原创 2021-10-12 19:13:19 · 3155 阅读 · 0 评论 -
opencv-face harr_cascade_det
#include "opencv2/objdetect/objdetect.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include <iostream>#include <stdio.h>using namespace std;using namespace cv;void detectAndDisplay(Mat frame);String原创 2021-09-21 23:57:17 · 114 阅读 · 0 评论 -
好思想 REID 无监督方法
https://blog.csdn.net/weixin_43979572/article/details/106161164 附论文下载链接:https://arxiv.org/pdf/2004.09228.pdf 【课题介绍】:北大Dongkai Wang,Shiliang Z转载 2021-05-08 10:23:16 · 570 阅读 · 0 评论 -
小孔成像模型中四个坐标系的转换:世界 相机光心 图像毫米 像素
相机模型 数码相机图像拍摄的过程实际上是一个光学成像的过程。相机的成像过程涉及到四个坐标系:世界坐标系、相机坐标系、图像坐标系、像素坐标系以及这四个坐标系的转换。 理想透视模型——针孔成像模型 相机模型是光学成像模型的简化,目前有线性模型和非线性模型两种。实际的成像系统是透镜成像的非线性模型。最基本的透镜成像原理如图所示: 其中 u 为物距, f 为焦距,v 为相距。三者满足关系式: 相机的镜...转载 2021-04-18 21:24:21 · 3056 阅读 · 1 评论 -
深度网络激活函数汇总
转载https://blog.csdn.net/GrayOnDream/article/details/102955297 文章目录 一、简介二、激活函数种类1、恒等函数2、单位阶跃函数3、逻辑函数4、双曲正切函数5、反正切函数6、Softsign函数7、反平方根函数(ISRU)8、线性整流函数(ReLU)9、带泄露线性整流函数(Leaky ReLU)10、参数化线性整流函数(PReLU)11、带泄露随机线性整流函数(RReLU)12、指数线性函数(ELU)13、扩展指数线性函数(SELU)14、S型转载 2021-04-14 12:09:03 · 553 阅读 · 0 评论 -
RGB图像转灰度图像的原理
简介 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与...转载 2021-01-19 21:01:05 · 5904 阅读 · 0 评论 -
典型cnn分类reid建模流程,pytorch代码实现
1 设置GPU和logger2 数据加载(编写dataset_manager(读取imgpath和标签list),编写dataset_load实现读入batch图片的预处理)3 建模(编写class net(nn.Module))4 loss、optimizer和学习率策略scheduler5 训练(每个epoch中分batch训练),用tensorboard记录trainloss的list6 测试/验证 没epoch或自定义startepoch开始),记录testloss的list,acc或mA原创 2020-10-01 17:44:58 · 315 阅读 · 0 评论 -
pytorch编写CNN模型的要点,及各个典型cnn汇总
lenetgAlexNet原创 2020-10-01 13:05:56 · 207 阅读 · 0 评论 -
idenet 学习记录:bili
整个功能架构设计(利用embed进行断点查看)数据读取、数据加载和预处理、模型、1 data_manager.py读取market1501数据集,返回dataset_train, query,gallery。p、I、c的个数再根据这个类进行重构2 dataset_loader.py1 transform.py构建transform类进行图像针管,数据增多,增强:随机裁剪center-crop,flip(在新大的差值内进行随机点生成)定义随机h的起点和w的起点model.py原创 2020-07-27 23:00:16 · 222 阅读 · 0 评论 -
行人再识别数据集 合辑 MSMT17(多场景多时段行人再识别数据集)
合辑地址http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html论文:PTGANPerson Transfer GAN to Bridge Domain Gap for Person Re-identification15Camera(12外景3室内),一个月的4天不同天气,每天3个时段共早中晚3小时。总共3415=180小时。用Faster原创 2020-07-07 14:30:01 · 1375 阅读 · 0 评论 -
跨模态检索REID 概述
1. 写在前面本文是我阅读近红外的跨模态行人重识别(RGB-IR Cross-Modality Re-id)文献的笔记,由于网上对该方面介绍的博客很少,所以这里我记录下阅读文章的一些要点和我自己对这些问题的思考。2. 综述1. Beyon...原创 2020-07-02 13:11:07 · 636 阅读 · 0 评论 -
一个拼凑的综述在识别
行人重识别---综述一、行人重识别简介1.行人重识别定义1.1 简单定义1.2 思考问题2.行人重识别发展与应用2.1 行人重识别发展历史2.2 行人重识别的应用3.相关数据集介绍及评价指标3.1 公开数据简介3.2 评价指标4.行人重识别重难点二、行人重识别研究方法综述2.1 基于表征学习的方法2.2 基于度量学习的方法2.3 基于局部特征的方法2.4 基于视频序列的方法2.5 基于生成对抗的方...原创 2020-07-02 13:10:18 · 328 阅读 · 0 评论 -
2020cvpr学习笔记
19日 image retrievalhttps://matsui528.github.io/cvpr2020_tutorial_retrieval/基于内容的图像检索是用于与视觉集合进行交互的最重要技术之一。尽管在过去十年中已取得了重大进展,但现有技术仅在标准基准(例如牛津数据集)上进行了评估,该数据集主要由建筑物图像组成。关于如何为实际应用创建实用且大规模的视觉搜索系统的讨论还不够多,例如在网上市场推荐购物商品或在安全场景中对行人进行重新标识。本教程涵盖了为实际应用程序构建图像检索系统的几个重要组原创 2020-07-02 12:57:52 · 224 阅读 · 0 评论 -
学习笔记 Unsupervised Domain Adaptive Re-Identification: Theory and Practice
文章目录0 摘要1 intro1 第一假设:协变量假设:2 第二假设:Separately Probabilistic lipschitzness:单独概率的平滑smooth:3 第三假设:权重比self-train框架2 符号定义3 假设、域自适应的可学习性定义1 协变量移位假设定义2 单独的概率平滑SPL定义3 权重比4 加强假设4.1 加强SPL 单独概率平滑4.2 加强权重比例 假设4.3 整个算法流程(a)它不需要簇的数量作为输入(b)能够避免对低置信度(c)它具有足够的可扩展性参数设置5 实验原创 2020-07-02 12:13:57 · 998 阅读 · 0 评论 -
reid的无监督调研
跨域无监督学习此类方法旨在如何以无监督的方式将预先训练好的模型从源域有效地传递到目标域49],一般情况下,直接将在源域中训练的模型应用到目标域,由于两个域之间存在一定差异,会导致效果不理想,而无监督的跨域方法会减小这种域差异,使得源域的模型也可以有效地用于无标签的目标域。伪标签法1. 文献[50]提出的PUL (Progressive Unsupervised Learning )2018使用预训练的模型从未标记的目标域训练集中提取图像特征,然后使用K-means聚类算法对这些特征聚类,再从这些类中原创 2020-07-01 18:01:33 · 718 阅读 · 0 评论 -
学习笔记:2017Unlabeled Samples Generated by GAN Improve the Person Re-identificatio(用LSRO生成gan图像的标签)
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro用标签平滑for outlaier 分类伪标签** We propose the label smoothing regularization for outliers (LSRO)**key:类别数仍未751,DCGan生成的数据按现有类别分布进行分配标签LSRO1 intro1)在未标记数据生成中采用GAN方法,2原创 2020-07-01 13:36:49 · 652 阅读 · 0 评论 -
学习笔记:Nvidia讲座 多域多层次转换(pose\appearence) 生成多条件y的外貌 few-shot unsupervised image to image translation
few-shot unsupervised image to image translationcontent pose、class 外貌target 外貌source poseFew-shot Unsupervised Image-to-Image Translation• Generating images of unseen domain in the few shot setting• Extract target domain appearance information via a原创 2020-06-30 14:04:11 · 206 阅读 · 0 评论 -
svm的简明推导hinge loss
https://www.cnblogs.com/wangxiu/p/5663140.html转载 2020-06-25 22:06:56 · 318 阅读 · 0 评论 -
学习笔记:人脸识别挑战
地址文章目录人脸识别最终任务:人脸比对任务模型泛化跨域 不满足实际应用挑战挑战二:跨群体性能下降人脸识别步骤检测难点faster RCNN:第一步背景还是ROI,第二步:什么物体回归框SSD,针对多尺度问题(深层锚框大尺度,中层锚框小尺度)数据集数据增强在线难例挖掘(1:3目标和背景,看loss大的排序选择)尺度补偿:尺度越小、越难检测融合特征 FCN 分类高特征,回归框依赖底层检测加速蒸馏大网络知识到小网络人脸检测展望三 人脸关键点定位人脸关键点用于AR,虚拟换装化妆人脸关键点检测方法1响应图回归法人脸原创 2020-06-24 22:46:50 · 729 阅读 · 0 评论 -
shifeng CV经验分享发顶会顶刊(深蓝)
学习地址主页人脸识别挑战张士峰主页学习心得:从问题出发,最好工程问题去解决。问题定义好(根据当前研究情况,无锚框和有)审稿人不光注重刷点,而是问题定义的好,大家关注的多,再提出idea读论文(看pipline,代码)无代码领会思想发会议6个月,2021cvpr10月。还有5个月抓紧搞7个工作14篇(会议改期刊),一年两个工作。(很对期刊同意期刊修改后投递)论文整理:会议、时间、类型分类...原创 2020-06-24 21:46:20 · 259 阅读 · 0 评论 -
视频动作分割
基于视觉的人体行为识别算法研究综述此处的动作分割指的是把连续的动作从视频中分割出来,即时域分割,也就是说如果一个视频中包含走、跑、跳等动作,动作分割算法能够准确地判断每个动作的的边界,并把该动作从原视频中分割出来。由于目前行为识别都是在已经分割好的数据集上进行的,而在现实中采集的数据都是未进行动作分割的视频,所以动作分割对实现连续的人体行为识别至关重要PCA方法不够智能,滑动窗口计算马氏距离基于聚类的方法Zhou 等 人[22]提 出 了 基 于 聚 类 方 法 的 动 作 分 割 ACA( al原创 2020-06-18 00:07:49 · 2527 阅读 · 1 评论 -
细粒度特征识别
魏秀参 综述课程Feature Feature 还是Feature不变性:光照不变性,旋转不变性,相机不变性,ID不变性,近邻不变性区别性:外形、细腻特征、2012年之前全局特征不变性较差局部特征2012之后 深度向量特征用一个集合表达,怎么到向量表达pooling 损失 的motivation协方差矩阵协方差–》流行空间,测地距离...原创 2020-06-17 16:30:01 · 3168 阅读 · 0 评论 -
学习笔记:6-16Infrared-Visible Cross-Modal Person Re-Identification with an X Modality
http://www.luyixian.cn/news_show_335517.aspxx modality可以指什么, 辅助模态,中间模态1 RGB–》x?可以理解成公共特征空间中拉近了各个模态的分布散度?提高搜索进度,但是Infrared没有–》X 5张?2 生成网络如何训练?是什么类型的条件GAN吗?为什么只映射rgb–》x。没有3 MRG模态各自模态分类softmax-triplet?,CMG跨模态差异是散度吗距离度量是什么?,设计的目的是什么?...原创 2020-06-16 17:55:19 · 441 阅读 · 0 评论 -
行为定位、行为识别
需要收集行为定位的方法待续。。。视频分类/行为识别是计算机视觉领域中非常有挑战性的课题,因为其不仅仅要分析目标体的空间信息,还要分析时间维度上的信息,如何更好的提取出空间-时间特征是问题的关键。本文总结了该领域的技术进展和相关数据集,技术进展从传统特征法到深度学习中的3DCNN,LSTM,Two-Stream等。1 视频分类/行为识别问题首先我们要明确这是一个什么问题,基于视频的行为识别包括两个主要问题,即行为定位和行为识别。行为定位即找到有行为的视频片段,与2D图像的目标定位任务相似。而行为识别即对原创 2020-07-02 12:56:54 · 1811 阅读 · 0 评论 -
2020cvpr学习笔记 new
文章目录2020日程(WS&Tutorials包含一、五、日)[主页](http://cvpr20.com/)周一 6-15 Workshops Auto deep learning15 日 已更新From HPO to NAS: Automated Deep Learning周二 6-16 **Main conference**周三 6-17 **Main conference**周四 6-18 **Main conference**周五 6-19 workshop tutorials19日 im原创 2020-06-16 00:13:18 · 410 阅读 · 0 评论 -
contrast 相似性loss、Triplet loss相对相似度(对类内不适合)、Angular loss增强了尺度不变性
https://blog.csdn.net/qq_16234613/article/details/81210320Angular Loss:Deep Metric Learning with Angular Loss从角度相似性方向考虑对triplet loss,增强了其尺度不变性,并且考虑了3阶几何约束。这篇文章的逻辑推理很nice。...原创 2020-06-12 14:38:02 · 1833 阅读 · 2 评论 -
text to image生成模型
摘要 文本生成图像作为近几年的热门研究领域,其解决的问题是从一句描述性文本生成与之对应的图片。近一周来,我通过阅读了近几年发表于顶会的近10篇论文,做出本文中对该方向的简要报告。报告中主要阐述了近几年最流行的解决方案——以GAN思想为主干的解决方案。首先我对现有方法进行了简单回顾,之后针对这些方法做出了自己的总结,将各方法中用来提升生成...转载 2020-05-29 23:48:35 · 1471 阅读 · 2 评论 -
光流 数据空间和数据分布的概念--迁移学习人工智能基础(高中版)
数据集:UCF101Youbube 13320个视频,101分类光流深度学习视频行为识别聚类GAN数据空间、数据分布我们已经知道数据对人工智能系统的重要性,生成模型也不例外。假如,我们的目标是让计算机从无到有自动生成看起来像大牌明星的图片,就要提供大量的明星照片供它学习参考。在生成模型眼里,这些照片数据组成一个整体,共同勾勒出明星们的外观特点。生成模型不是要学习生成某个特定的明星的照片,而是要把握这些照片整体上的特点,生成有“明星范儿”的图片。那么,怎么刻画数据呢?这要引人数据空间和数原创 2020-05-29 20:45:30 · 1104 阅读 · 0 评论 -
欧氏距离、规范化欧氏距离=L2normal规范化平方和/模=1、softmax归一化和=1、z-sorce标准化(变化范围0~1,和不为1
归一化和规范化使用情况1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,标准化(Z-score standardization)表现更好,可消除各个维度上的差异2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围一、欧式、L2规范化欧氏距离、softmax归一化和=0规范化:针对数据库规范化把关系满足的规范要求分为几级,满足要求最低的是第一范式(1N原创 2020-05-27 17:45:39 · 3782 阅读 · 0 评论 -
计算机视觉论文解读介绍
guolairen十大流行看看服饰reid原创 2020-05-15 23:46:43 · 231 阅读 · 0 评论 -
视频监控技术综述
看看以前的综述,传统算法解决问题的方法找找灵感:分类识别(特征提取sift再聚类SVM分类)检测(基于目标HOG全局刚性模型性,基于部件变形DPM,深度学习R-CNN)再到今天的Yolo,真是发展太快了概述:所属计算机视觉、模式识别(通俗:目标是什么、做什么、在哪里、预测会发生什么智能监控让计算机像人脑分析视频序列,对被监控场景内容进行理解,实现对异常行为的自动预警和报警。应用:公共安全监控、工厂现场监控、居民小区、交通状态、犯罪预防、交通管制、意外防范、老弱病残监护。发展在底层上对动原创 2020-05-14 21:16:32 · 741 阅读 · 0 评论 -
论文写作 计算机类顶会顶刊,及论文发表指导
计算机方向的一些顶级会议和期刊(转载) IEEE TRANSACTIONS ON COMPUTERS Computer VisionConf.: Best: ICCV, Inter. Conf. on Computer Vision &n转载 2020-05-14 20:05:08 · 2849 阅读 · 0 评论 -
CVPR征集范围
http://cvpr2020.thecvf.com/submission/main-conference/author-guidelines#call-for-papers以上地址有提交要求和模板下载范围3D电脑视觉 3D computer vision行动与行为识别 Action and behavior recognition对抗学习,对抗攻防方法 Adversarial learning, adversarial attack and defense methods生原创 2020-05-14 12:42:42 · 264 阅读 · 0 评论 -
IEEE查找可发表的期刊会议\投稿格式等\文献搜索
一般论文发表的步骤1 选择IEEE期刊\会议call for paperIEEE发表期刊的指导说明这是IEEE投稿推荐系统-输入关键字就可以查到可投期刊和会议2 撰写手稿,下载会议/期刊提交格式会议提交格式期刊提交格式3 查看期刊会议scope,和文献查找文献4 提交系统 endnote icpr提交系统icpricpr提交系统pdftest系统...原创 2020-05-13 18:02:24 · 1326 阅读 · 0 评论 -
如何使用IEEE电气电子工程师学会 投稿 Getting Published with IEEE
Journal(完成研究)和Conference(前期成果展示交流接受率高)区别Journal / Transaction (6页)和 magazinLetters(超长收费)170多本1 New Research2 Tutorial Article3 Application Note4 Review Article决定投哪个会议...原创 2020-05-13 17:05:58 · 163 阅读 · 0 评论 -
学习笔记:自动驾驶中CV的应用
文章 基于计算机视觉的自动驾驶算法研究综述一传统CV的自动驾驶任务1 道路与车道线识别道路与车道识别是自动驾驶技术的基础内容,如 Caltech lane detector[1] 中论述。常见的道路的识别算法基于图像特征进行计算,其分析图像中表示车道线或道路边界等的灰度,颜色,纹理等特征,通过神经网络、支持向量机、聚类分析和区域生长等方法便可以分割出路面区域。这类方法对道路曲率的变化有很好的鲁棒性。[2]中提出了基于直方图统计方法,[3]中提出了一种通过灭点分析进行路面检测的方法,均取得了不错的效果。原创 2020-05-10 11:19:20 · 2067 阅读 · 0 评论 -
计算机视觉、机器视觉、数字图像处理、机器学习/深度学习+图像处理 四者的关系
一、机器能进行视觉感知的进化发展(就算机器能识别各种物体用处大吗)小猫有眼睛,认识吃的就吃,看到危险就躲,还能抓苍蝇。那具有运动能力的机器没有视觉怎么做出决策和会执行。机器拿到数字图像如何提取感知信息(像小猫认识吃,判别危险,感知苍蝇的位置)人眼感知信息:空间、色彩、形状、运动1 机器人需要视觉感知机器人(Robot)是一种能够半自主或全自主工作的智能机器,具有感知、决策、执行等基本特征,可以辅助甚至替代人类完成危险、繁重、复杂的工作,提高工作效率与质量,服务人类生活,扩大或延伸人的活动及能力范围。原创 2020-05-09 15:39:47 · 9153 阅读 · 0 评论 -
学习笔记:模型训练技巧
https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247486778&idx=2&sn=23582d015eff1d0d5ba0c6f71ca86296&chksm=ec1fe0c3db6869d588af077e6041377193cee8c8eeb069f283bdf6b9a2613bb7dc6b4c7...原创 2020-05-01 12:46:57 · 154 阅读 · 0 评论 -
研究更具体的问题,从而得出更精细的网络模型,人体形态识别
openpose姿态识别aiphapose强化学习:完备的环境信息(教电脑打游戏)带热深度学习的使aphago,深度学习+强化学习原创 2020-04-21 23:40:03 · 230 阅读 · 0 评论 -
CV研究方向选择
计算机视觉方向:目前了解的图像分类:是基准模型进行评价的任务,CV基础之基础目标识别(子方向多的很,人脸,行人,特征点,姿态,行为):应用自动驾驶目标分割目标追踪重识别domain transfer图像滤波与降噪图像增强风格化:艺术滤镜三维重建:电影,游戏,图像检索GAN总结这段时间看过的论文,做过的实验等等,并写出三个想做的可能方向,并给出理由,比如该方向在顶会顶刊的...原创 2020-04-15 17:31:35 · 7899 阅读 · 0 评论