FOC坐标变换
这里简述FOC中用到的用到的Clarke和Park坐标变换所涉及到的公式,想要更加详细了解可自行百度。
1. Clarke变换(3s/2s)
N
3
:
三
相
绕
组
每
相
绕
组
匝
数
N_3:三相绕组每相绕组匝数
N3:三相绕组每相绕组匝数
N 2 : 两 相 绕 组 每 相 绕 组 匝 数 N_2:两相绕组每相绕组匝数 N2:两相绕组每相绕组匝数
各相磁动势为有效匝数与电流的乘积,其相关空间矢量均位于有关相的坐标轴上。设磁动势波形是正弦分布的,当三相总磁动势与相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在Alpha和Beta轴上的投影都应相等,因此
N
2
i
2
=
N
3
i
A
−
N
3
i
B
c
o
s
60
−
N
3
i
C
c
o
s
60
=
N
3
(
i
A
−
1
2
i
B
−
1
2
i
C
)
N_2i_2 = N_3i_A - N_3i_Bcos60 - N_3i_Ccos60 = N_3(i_A - \frac{1}{2}i_B - \frac{1}{2}i_C)
N2i2=N3iA−N3iBcos60−N3iCcos60=N3(iA−21iB−21iC)
N
2
i
2
=
N
3
i
B
s
i
n
60
−
N
3
i
C
s
i
n
60
=
3
2
N
3
(
i
B
−
i
C
)
N_2i_2 = N_3i_Bsin60 - N_3i_Csin60 = \frac{\sqrt3}{2}N_3(i_B - i_C)
N2i2=N3iBsin60−N3iCsin60=23N3(iB−iC)
考虑变换前后总功率不变,可得匝数比应为
N
3
N
2
=
2
3
\frac{N_3}{N_2} = \sqrt\frac{2}{3}
N2N3=32
则Clarke变换:
Clarke反变换:
如果三相绕组是Y形联结不带零线,则有
i
A
+
i
B
+
i
C
=
0
i_A + i_B +i_C = 0
iA+iB+iC=0
则有:
进行标幺化(以
2
3
\sqrt\frac{2}{3}
32为基准值):
i
α
=
i
A
i_\alpha = i_A
iα=iA
i β = ( i A + 2 i B ) / 3 i_\beta = (i_A+2i_B)/\sqrt3 iβ=(iA+2iB)/3
2. Park变换(2s/2r)
两个交流电流 i α i_\alpha iα 、 i β i_\beta iβ 和两个直流电流 i d i_d id 、 i q i_q iq ,产生同样的以同步转速 ω 1 \omega_1 ω1旋转的合成磁动势 F s F_s Fs
d d d、 q q q轴和矢量 F s ( i s ) F_s(i_s) Fs(is)都以转速 ω 1 \omega_1 ω1 旋转,分量 i d i_d id、 i q i_q iq 的长短不变。 α \alpha α轴与 d d d轴的夹角 ω \omega ω 随时间变化
由图可见,
i
α
i_\alpha
iα、
i
β
i_\beta
iβ和
i
d
i_d
id、
i
q
iq
iq之间存在下列的关系
i
α
=
i
d
c
o
s
θ
−
i
q
s
i
n
θ
i_\alpha = i_dcos\theta - i_qsin\theta
iα=idcosθ−iqsinθ
i β = i d s i n θ + i q c o s θ i_\beta = i_dsin\theta + i_qcos\theta iβ=idsinθ+iqcosθ
写成矩阵的形式为:
坐标系变换矩阵为: