原理
分类器
机器学习的分类器,均可以看成一个或一组超平面,将label不同的数据点在数据空间中分开。对于线性可分问题,属于相同label的数据点在数据空间中可以看成是“类聚”的,即具有相同label的点会聚在一起。这样,分类效果最好的超平面应该满足:对于其分割的两种label,距离最近的两个不同label的数据点距离超平面的距离都足够大,即超平面离两个类聚的空间都足够远。
支持向量
对于支持向量机来说,最关心的并不是所有数据的分布情况,而是所谓类聚空间边界的相互位置,这些边界上的数据点,即两个空间间隔最小的两个数据点被称为支持向量,支持向量机分类器就是针对这些点优化的分类器
核函数
以上的所有说明都是针对线性可分问题的,当处理线性不可分问题的时候,线性分类器就无能为力了。那么需要使用一个叫核函数的东西,将线性不可分问题变成线性可分问题。核函数是一种对应关系,可以将数据映射到更高的维度上去,即认为:在当前维度不可分的问题,到达更高维度的时候有可能变的线性可分。在支持向量机的范畴中,核函数是一种先验,即人工在训练前就指定的。在当前的神经网络算法中,可以将输出层看成线性分类器,将隐藏层看成核函数,这样的视角下神经网络中的核函数是通过数据训练出来的
代码实现
载入手写体数据集
from sklearn.datasets import load_digits
digits = load_digits()
print(digits.data.shape)
print(type(digits),type(digits.data