PySpark DataFrame 常用操作

1. 导出为csv文件

df_by_trucks.toPandas().to_csv('/dbfs/FileStore/static.csv', encoding='gb2312', index=False)

2. 创建DF或读入DF

from pyspark.sql import SparkSession
from pyspark.sql import Row
from pyspark.sql.types import *
from pyspark.sql.functions import *
 
df = spark.sql("select * from table_name")

3. 查询

可以用show也可以用display,区别就是show出来的结果是sql形式,而display是比较规范的表格形式,我个人比较喜欢用display。另外也可以用collect,这个输出是Row类。

spark.sql('select region,platecolor from fleetdatamodel_prd.trucks').show()
***************
region|platecolor|
+------+----------+
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
|    粤|        黄|
df = spark.sql('select region,platecolor from fleetdatamodel_prd.trucks')
display(df)

 

df = spark.sql('select carlicense,region,platecolor from fleetdatamodel_prd.trucks')
#打印摘要
df.printSchema()
#查询总行数
df.count()
#查询某列为Null的行
from pyspark.sql.functions import isnull
df.filter(isnull('CarLicense')).show()
#查询各列概况
df.describe().show()
#去重
df.select('CarLicense').distinct().show()
#where条件
df.where(df['region'] == '佛').show()
#排序
df.orderBy(df['region'].desc()).show()
#抽样,False代表不放回抽样,0.2表示抽样比例,1234是seed
df.sample(False,0.2,1234).show()
#新增数据列
df.withColumn('label',lit(0)).show(5)
#修改列名
df.withColumnRenamed('region','Region').show(5)
#合并表
df2 = df.join(df1,on = 'CarLicense',how = 'left')
display(df2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远胥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值