变压器
变压器的目的是转换电压的大小,实现升压或者降压的目的.而我们看到下图,通常变压器不止一条回路,单相变压器有两条回路,三相变压器则有6条回路.
那我们通常希望在输入端的一条或者几条回路中,就可以计算各种各样的参数,例如输入端的电流或者变压器消耗的电压,功率等等.
高中部分变压器的等效电路
在高中部分的计算中,通常不会考虑变压器中线圈的电感因素和电阻,因此,这一部分等效电路,忽略电感,忽略变压器的电阻电感以及绕组的电感电阻.将上述实物图转化为我们更为熟悉的电路图如下;
虽然熟悉.但是上图有两条回路,还是为我们分析上面这一电路图带来一些困难,我们希望更为直观,将其变为最简单的电路图如下.
U
1
U
2
=
n
1
n
2
U
1
I
1
=
U
2
I
2
R
2
=
U
2
I
2
\frac{U_1}{U_2}=\frac{n_1}{n_2} \\ U_1I_1=U_2I_2 \\ R_2=\frac{U_2}{I_2}
U2U1=n2n1U1I1=U2I2R2=I2U2
而在图2中,我们有如下公式;
R
2
′
=
U
1
I
1
R_2'=\frac{U_1}{I_1}
R2′=I1U1
而我们希望将
R
2
′
R_2'
R2′的计算式变为一系列常数,因此,更具上述4个式子,我们可以得到;
U
1
=
n
1
n
2
U
2
I
1
=
n
2
n
1
I
2
U_1=\frac{n_1}{n_2}U_2 \\ I_1=\frac{n_2}{n_1}I_2
U1=n2n1U2I1=n1n2I2
最后,
R
2
′
=
U
1
I
1
=
n
1
2
U
2
n
2
2
I
2
=
n
1
2
n
2
2
R
2
=
k
2
R
2
R_2'=\frac{U_1}{I_1}=\frac{n_1^2U_2}{n_2^2I_2}=\frac{n_1^2}{n_2^2}R_2=k^2R_2
R2′=I1U1=n22I2n12U2=n22n12R2=k2R2
其中,
k
k
k称之为变比,是一个常数。
由此,图2电路中所有的未知参数都得到了,可以进行正常的电路计算了。
大学部分的等效电路
那么,在高中部分,我们忽略了变压器的感抗和阻抗,忽略了线圈的感抗。那么,还是这张图,我们分析,左右两端是一个独立的回路,而联接两个回路的只有磁路,因此我们首先要从磁路部分开始分析,以得到两个回路之间某些参数的关系式,然后根据关系式,建立一个目标等效电路。
首先,我们分析初始状态;
初始状态下,变压器二次侧无负载,则一次侧产生空载电流
I
0
s
i
n
(
w
t
)
I_0sin(wt)
I0sin(wt),而空载电流是一个交流电,因此在一次侧线圈中会产生交流磁场产生主磁通
Φ
m
˙
=
Φ
0
s
i
n
(
w
t
)
\dot{\varPhi _m}=\varPhi _0sin(wt)
Φm˙=Φ0sin(wt),而在二次侧线圈中由磁通量在不断的变化,导致二次侧线圈中产生感应电动势,但是二次侧并未接上负载产生回路,因此,没有办法产生感应电流,既然二次侧没有电流,自然也就无法产生磁场。然而,在变压器的铁芯中,由于有不断变化的磁场,铁芯内部会产生涡旋电流,进而产生热量导致能量消耗.而这里的热量等效到电路上,就是变压器的等效电阻
R
m
R_m
Rm产生的热量消耗.然而不得不提的是,变压器除了会产生热量消耗,还会造成电压超前电流的效果,等效来看,就是变压器会给一次侧产生一个等效电感
Z
m
Z_m
Zm。
变化后的末状态,在二次侧接入固定数值的负载电阻;
中间的变化状态;
当负载端接入时,感应电动势产生感应电流
I
2
I_2
I2,由感应电流
I
2
I_2
I2又产生感应磁通
Φ
2
s
i
n
(
w
t
)
\varPhi _2sin(wt)
Φ2sin(wt)进而导致变压器铁芯中的主磁通的幅值发生改变变化
Φ
m
˙
=
(
Φ
0
−
Φ
2
)
s
i
n
(
w
t
)
\dot{\varPhi _m}=(\varPhi _0- \varPhi _2)sin(wt)
Φm˙=(Φ0−Φ2)sin(wt)。接下来,由于主磁通的幅值变小,导致一次侧产生的感应电动势
U
1
U_1
U1降低,一次侧的电阻所分担的电压上升,电流由空载电流
I
0
I_0
I0变大为
I
1
I_1
I1。那么
I
1
I_1
I1又会导致主磁通的幅值变大,导致二次侧的感应电压变大,进而导致二次侧的电流变大。
那么根据上述的阐述,一次侧和二次侧的电流和感应电动势都在相互竞争着变大,然而无论哪一边产生的磁通导致主磁通比初始状态的主磁通大或者小,都会引来相应的变化,那么,平衡状态,就是最终左右两侧的电流,产生的磁通之和等于初始状态时的主磁通(即空载电流产生的磁通)。
用公式来表示这一个平衡状态;
F
0
=
F
1
−
F
2
F_0=F_1-F_2
F0=F1−F2
即;
I
0
n
1
=
I
1
n
1
−
I
2
n
2
I_0n_1=I_1n_1-I_2n_2
I0n1=I1n1−I2n2
进一步转换;
I
0
=
I
1
−
n
2
n
1
I
2
=
I
1
−
I
2
′
I_0=I_1-\frac{n_2}{n_1}I_2=I_1-I_2'
I0=I1−n1n2I2=I1−I2′
I
2
′
I_2'
I2′为等效为一次绕组侧的电流。
那么我们发现,这是一个电流分支的式子,即,
I
1
I_1
I1为干路电流,
I
0
I_0
I0和
I
2
′
I_2'
I2′为支路电流。那么可以等效成如下电路图。
其实,右侧的负载电阻以及二次绕组电阻的等效变换都如同高中部分所学的一样,并未改变。额外添加的感抗也如同电阻等效变换一样。
只是电路额外添加了一条支路,内部
R
m
′
R_m'
Rm′是由变压器内部铁芯能量损耗所等效的电阻,而
X
m
′
X_m'
Xm′是变压器电流滞后效应等效而来的感抗。那么,下面直接给出各参数的计算公式;
R
2
′
=
k
2
R
2
X
2
′
=
k
2
X
2
R
L
′
=
k
2
R
L
R
m
=
P
F
e
I
0
2
R_2'=k^2R_2 \\ X_2'=k^2X_2 \\ R_L'=k^2R_L \\ R_m=\frac{P_{Fe}}{I_0^2}
R2′=k2R2X2′=k2X2RL′=k2RLRm=I02PFe
其中,
P
F
e
P_{Fe}
PFe表示空载铁芯损耗。
最后一个参数,
X
m
X_m
Xm暂时没有直接的计算方法,应该由题目给出的初始条件计算得出。