一. 终值定理
拉普拉斯变换终值定理公式如下:
lim
t
→
∞
f
(
t
)
=
lim
s
→
0
s
F
(
s
)
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
t→∞limf(t)=s→0limsF(s)
要知道这个公式在自控中的用途,还得从它的意义讲起。
如公式的左边,我们知道这个公式的目标是求
f
(
t
)
f(t)
f(t)的终值,由于在自动控制原理中,大部分函数都是在一个值的附近不断波动的,但波动会随着时间不断减小最后变为0,因此,这个公式可以直接求得
f
(
t
)
f(t)
f(t)函数稳定后不受波动变化时的稳定值。
那么,这个公式的意义在于简化了繁琐的求解过程。为什么这样说呢?我们知道,为了解一个复杂的微分方程,普遍方法是使用拉普拉斯变换辅助求解获得目标函数,但是此方法比较容易获得到的是
F
(
s
)
F(s)
F(s)也就是
L
[
f
(
t
)
]
L[f(t)]
L[f(t)],而距离获得目标函数,还要对其进行拉普拉斯反变化来获得,最后才进行极限求解。而这一个公式,直接省去了拉普拉斯反变换的过程,直接进行极限求解,因此说这个公式简化了求解过程。
1.1 终值定理求解稳态值
我们用一个简单的例子来讲述终值定理如何运用:
假设一个系统的闭环传递函数为:
Φ
(
s
)
=
1
T
s
+
1
\Phi(s)=\frac{1}{T s+1}
Φ(s)=Ts+11
若给一个单位阶跃信号,求其稳态值。
求其复域响应:
C
(
s
)
=
R
(
s
)
⋅
Φ
(
s
)
=
1
s
⋅
1
T
s
+
1
C(s)=R(s)\cdot\Phi(s)=\frac{1}{s}\cdot\frac{1}{T s+1}
C(s)=R(s)⋅Φ(s)=s1⋅Ts+11
1.1.1 普通方法
使用拉普拉斯反变换求时间响应;
c
(
t
)
=
L
−
1
[
C
(
s
)
]
=
1
−
e
−
1
T
t
c(t)=L^{-1}\left[ C(s) \right]=1-e^{-\frac{1}{T} t}
c(t)=L−1[C(s)]=1−e−T1t
利用极限求稳态值;
lim
t
→
∞
c
(
t
)
=
lim
t
→
∞
1
−
e
−
1
T
t
=
1
\lim _{t \rightarrow \infty} c(t)=\lim_{t \rightarrow\infty}1-e^{-\frac{1}{T} t}=1
t→∞limc(t)=t→∞lim1−e−T1t=1
由此可知,稳态值为1。
1.1.2 终值方法
由拉普拉斯终值定理公式,可写:
lim
t
→
∞
c
(
t
)
=
lim
s
→
0
s
C
(
s
)
=
lim
s
→
0
s
⋅
1
s
1
T
s
+
1
=
lim
s
→
0
1
T
s
+
1
=
1
\begin{aligned} \lim _{t \rightarrow \infty} c(t)&=\lim _{s \rightarrow 0} s C(s)\\ &=\lim_{s\rightarrow0}s\cdot\frac{1}{s}\frac{1}{T s+1}\\ &=\lim_{s\rightarrow 0 }\frac{1}{T s+1}\\ &=1 \end{aligned}
t→∞limc(t)=s→0limsC(s)=s→0lims⋅s1Ts+11=s→0limTs+11=1
与普通方法对比,结果相同,但其计算过程却简便了不少。
1.2 终值定理求解稳态误差
我们继续用上一个例子来讲述终值定理:
假设一个系统的闭环传递函数为:
Φ
(
s
)
=
1
T
s
+
1
\Phi(s)=\frac{1}{T s+1}
Φ(s)=Ts+11
若给一个单位斜坡信号,求其稳态误差。
求其复域响应:
C
(
s
)
=
R
(
s
)
⋅
Φ
(
s
)
=
1
s
2
⋅
1
T
s
+
1
C(s)=R(s)\cdot\Phi(s)=\frac{1}{s^2}\cdot\frac{1}{T s+1}
C(s)=R(s)⋅Φ(s)=s21⋅Ts+11
则误差复域信号为:
E
(
s
)
=
R
(
s
)
−
R
(
s
)
⋅
Φ
(
s
)
=
R
(
s
)
⋅
[
1
−
Φ
(
s
)
]
=
1
s
2
(
1
−
1
T
s
+
1
)
=
1
s
2
T
s
T
s
+
1
\begin{aligned} E(s)&=R(s)-R(s)\cdot\Phi(s)=R(s)\cdot[1-\Phi(s)]\\ &=\frac{1}{s^2}(1-\frac{1}{T s+1})\\ &=\frac{1}{s^2}\frac{Ts}{T s+1} \end{aligned}
E(s)=R(s)−R(s)⋅Φ(s)=R(s)⋅[1−Φ(s)]=s21(1−Ts+11)=s21Ts+1Ts
1.2.1 普通方法
求误差时间响应:
e
(
t
)
=
L
−
1
[
E
(
s
)
]
=
T
−
T
e
−
t
T
\begin{aligned} e(t)&=L^{-1}[E(s)]=T-Te^{-\frac{t}{T} } \end{aligned}
e(t)=L−1[E(s)]=T−Te−Tt
同样,利用极限:
lim
t
→
∞
e
(
t
)
=
lim
t
→
∞
T
−
T
e
−
t
T
=
T
\lim_{t \rightarrow\infty}e(t)=\lim_{t \rightarrow\infty}T-Te^{-\frac{t}{T}}=T
t→∞lime(t)=t→∞limT−Te−Tt=T
即,稳态误差为
T
T
T。
1.2.2 终值方法
由拉普拉斯终值定理公式,可写:
lim
t
→
∞
e
(
t
)
=
lim
s
→
0
s
E
(
s
)
=
lim
s
→
0
s
⋅
1
s
2
T
s
T
s
+
1
=
lim
s
→
0
T
T
s
+
1
=
T
\begin{aligned} \lim _{t \rightarrow \infty} e(t)&=\lim _{s \rightarrow 0} s E(s)\\ &=\lim_{s\rightarrow0}s\cdot\frac{1}{s^2}\frac{Ts}{T s+1}\\ &=\lim_{s\rightarrow 0 }\frac{T}{T s+1}\\ &=T \end{aligned}
t→∞lime(t)=s→0limsE(s)=s→0lims⋅s21Ts+1Ts=s→0limTs+1T=T
由此,比较两方法发现结果相同。