变压器原理(自学笔记)

        一名大三电机狗的自学笔记。。。

        这里先做单相变压器的吧,三相的单独做一个笔记!(电路理论三相电源的时候没学好,所以觉得有点难)

        如果有误的话欢迎大家私信我!!

一. 含磁耦合的电路

        1. 毕奥-萨法尔定律:电流的磁效应->通电线圈产生磁场(ψ)

                B = \mu _{0}nI                        {\phi = B\cdot S}                {\psi = N\cdot \phi}

        2. 楞次定律:磁生电

                u = -\frac{d\psi}{dt}

        现在从电流到磁场已经打通路径了,那么变压器怎么变换电压呢?

        3. 含磁耦合的电路

                

        当输入电流i1变化时,响应的Φ也会变化,则第二个线圈会由交变的磁场产生感应电动势。

        u_{11} = -\frac{d\psi_{11}}{dt}, u_{21} = -\frac{d\psi_{21}}{dt}            

        还有一些可以了解的知识,但是由于是电机拖动里面的复习就不详细写上去了,下面简介一些。。。

        3.1 同名端:电流分别从不同线圈流入,形成的磁场相互加强的两个端子为同名端

        3.2 自感与互感:自感指自身交变电流产生的反抗自身电流变化的感应电动势;同时,这个变化的电流使附近的线圈产生感应电动势的现象叫互感(只要在这个磁场里面就可以)                    

二. 理想变压器原理

   1. 理想变压器建模的基本假设:

        1.1 全耦合,无漏磁        k = \frac{M}{\sqrt{L_{1}L_{2}}} = 1

        1.2 忽略一二次侧线圈电阻

        1.3 忽略铁芯损耗与磁阻

        1.4 U1为正弦电压

   2. 图示分析:

        注意:U的指向是压降,而E的指向是指向高电压处。

        分析一种情况:I1正向增大,那么实际方向来讲,E1和E2都是上正下负(与规定正向相反),所以两回路感应电动势的公式为:

                e_{1} = N_{1}\frac{d\phi}{dt}                e_{2} = N_{2}\frac{d\phi}{dt}

        由于建模假设没有导线电阻,因此u_{1} = -e_{1}, u_{2} = e_{2}

        K_{e} = \frac{N_{1}}{N_{2}} = \frac{E_{1}}{E_{2}} = -\frac{u_{1}}{u_{2}} = \frac{U_{1}}{U_{2}} ,其中小写字母为瞬时值,大写为有效值

        功率传递:U_1I_1= U_2I_2

        所以推导出来的变压器结论:K_e = \frac{I_2}{I_1}, \hat{Z_L} = K_e^{2}Z_L\hat{Z_L}是二次侧阻抗等效到一次侧的阻抗)正比变压,反比变流,平方变阻抗。

三. 变压器运行分析

   1. 空载运行分析和一次侧等值电路

        1.1 磁势、磁通和磁阻

        F = \phi\cdot R_m                R_m = \frac{L}{\mu S },其中L为磁路长度,A为磁路横截面积

同时F = NI,即等于线圈电流×线圈匝数;

        F = HL,即等于磁场强度×磁路长度

        1.2 电动势

        正弦电压U1产生磁通近似为正弦波:\phi = \Phi_m sin(\omega t)

\therefore e_1 = -N_1 \Phi_m \omega sin(\omega t + \frac{\pi}{2}), e_2 = -N_2 \Phi_m \omega sin(\omega t + \frac{\pi}{2})

        感生电动势有效值:E = \frac{1}{\sqrt{2}} 2 \pi f\Phi_mN \approx 4.44 fN\Phi_m

        一次侧分析:\left\{\begin{matrix} u_2 = e_2 \\ u_1= -e_1- e_{1\sigma} + i_0R_1 \approx -e_1 \end{matrix}\right.,R1为一次侧绕组电阻

        \therefore \frac{U_1}{U_2} \approx K_e

        1.3 非正弦励磁电流的正弦等效处理

        由于铁磁材料的磁化曲线具有磁滞特性(非线性),因此要产生正弦交变磁通,励磁电流必然是非线性的。而非线性电流不能用一个符号代入计算,因此要做正弦等效处理。

        引入正弦等效电流\dot{I_0}代替i0。等效原则:等效前后有效值、频率、相位相同,有功功率不变。

        电流:\dot{I_0} = \dot{I_{0active}} + \dot{I_{0reactive}},第一项包括有功电流、铁耗、铜耗;第二项包括无功电流、励磁分量,\dot{I_{0active}} >> \dot{I_{0reactive}}

        1.4 一次侧绕组等值电路与相量图

        \dot{U_1} = -\dot{E_1} + \dot{I_0}(R_1 + jX_1) \\ \dot{E_1} = -\dot{I_0}(R_c + jX_m) \\ \dot{U_1} = \dot{I_0}(Z_m+Z_1)

   2.负载运行与T型等值电路

        2.1负载运行分析

在知道变压器空载运行状况后,我们就需要对其带载运行进行分析,并最终建立数学模型。

        

        带载运行时,二次侧E2产生电流I2,I2->Φ2,其方向削减主磁通Φ0;

        一次侧U_1 = -E_1 +I_1 Z_1,  Φ0↓->E1↓,又U1不变,所以I1↑->Φ1↑,基本抵消I2的去磁作用。

        因此,在变压器带载运行的过程中,主磁通基本保持不变

        从这个模型可以推导出磁势平衡方程与二次侧电势平衡方程:

                        \dot{U_1} = -\dot{E_1} + \dot{I_1}(R_1 + jX_{m1}) \\ \dot{E_1} = -\dot{I_0}(R_c + jX_m) \\ \dot{F_{m0}} = \dot{I_1}N_1 + \dot{I_2}N_2 = \dot{I_0}N_1 \\ \dot{U_2} = \dot{E_2} - \dot{I_2}Z_2 \\ \dot{U_2} = \dot{I_2}Z_L \\ \dot{E_1} = K_e\dot{E_2}

         2.2 T型等值电路

        从上述六个公式,我们希望可以用一个等值电路描述这一过程,且希望一次侧和二次侧可以相连,这样就需要满足基尔霍夫定律。而\dot{I_0} \neq \dot{I_1} + \dot{I_2} , \dot{E_1} \neq \dot{E_2}并不满足,所以需要进行电流和电压折算。(因为不满足电流电压定律,所以目前上下不能相连)

        

        折算的核心理解:N1 = N2

        绕组电势折算:\dot{E_2}' = K_e\dot{E_2} = \dot{E_1}

        电流折算:\dot{I_2}' = \frac{\dot{I_2}}{K_e}

        阻抗折算:保证折算后E2'对应的电流是I2

                          Z_2' + Z_L' = \frac{\dot{E_2}'}{\dot{I_2}'} \\ \therefore Z_2' = K_e^{_{^{2}}}Z_2, \space Z_L' = K_e^{_{^{2}}}Z_L

        电压折算:\dot{U_2}' = K_e \dot{U_2}

        由计算可以验证,等效前后的能量与功率传递完全等效。所以等值电路可以画成:

        至此,我们得出了变压器的T型等值电路。

        2.3 相量图

        这里不再做具体分析了(电路理论的知识,知道微分滞后90°和阻抗中实部与虚部的比例关系就能画出来)。这里给出变压器相量图:

        

         

        

### 创建理想变压器模型 在 MATLAB Simulink 中构建理想的变压器模型涉及多个组件的选择和配置。为了实现这一目标,可以采用内置的理想变压器模块来简化建模过程[^1]。 #### 使用Simscape Electrical中的理想变压器模块 Simulink 提供了一个名为 Simscape Electrical 的库,其中包含了用于电力系统的元件,包括理想变压器。该理想变压器能够精确表示初级线圈与次级线圈之间的耦合关系,并允许设定匝数比作为其主要属性之一。通过调整这些参数,即可轻松定义不同规格的理想变压器。 ```matlab % 打开一个新的空白模型窗口 new_system('IdealTransformerModel'); open_system('IdealTransformerModel'); % 添加理想变压器和其他必要的电路元件到工作区中 add_block('simelectrical/Elements/Ideal Transformer','IdealTransformerModel/Ideal_Transformer') add_block('simelectrical/Sources/Voltage Source', 'IdealTransformerModel/Voltage_Source') add_block('simelectrical/Monitors/Ammeter', 'IdealTransformerModel/Ammeter_Primary') add_block('simelectrical/Monitors/Ammeter', 'IdealTransformerModel/Ammeter_Secondary') add_block('simelectrical/Terminations/Ground', 'IdealTransformerModel/Ground') % 设置理想变压器的比例系数(即变比) set_param('IdealTransformerModel/Ideal_Transformer', 'TurnsRatio', '10') % 假设设置为10:1 % 连接各部件形成完整的电路图并保存文件 connect_lines; save_system('IdealTransformerModel.slx'); close_system('IdealTransformerModel', 0); ``` 上述脚本展示了如何利用命令行快速搭建一个简单的理想变压器测试平台,在这里假设了特定的电压源、两个安培表分别测量初边和副边电流以及接地端子。同时设置了理想变压器的匝数比例为 `10` ,这可以根据实际需求灵活更改。 #### 参数配置说明 对于理想变压器而言,最重要的参数就是 **匝数比 (Np:Ns)** 。此比率决定了输入电压 Ui 和输出电压 Uo 之间的确切转换关系: \[ \frac{U_o}{U_i}=\frac{Ns}{Np}\] 此外,还可以指定其他选项如饱和效应等高级功能,但在大多数情况下,默认设置已经足够满足基本实验的需求。 #### 启动仿真分析 完成以上步骤之后就可以运行整个项目来进行初步的结果观察;也可以进一步添加更多复杂的负载情况或者扰动信号以便更深入地了解理想变压器的行为特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值