导体中的电动势
首先,我们的目的是分析每根导体中的电动势大小,进而可以获得电枢的总电动势。而我们知道,导体电动势可以由如下公式求得:
ε
=
B
l
v
\varepsilon=Blv
ε=Blv这个公式,想必大家高中就已经学过了,但是在大学里面,我们并不可以直接使用这个公式,而要考虑大量的实际情况,再加以使用。
既然有了目标公式,我们就知道下一步要做的事情了。那么看到这个公式,我们要思考的是,这里的磁场
B
B
B是那一部分的磁场,以及
l
l
l是什么,再一个就是
v
v
v。
简单电机导体电动势
我们先从最简单的电机考虑,电机结构如下;
我们利用工具可以测出转子静止状态下,磁场
B
B
B分布的实际情况(按照定子内圆周长
α
\alpha
α的方向展开)为下图(b)中的
b
δ
b_{\delta}
bδ曲线.
我觉得啊,这个曲线极难用函数描述出来并加以分析,所以,使用了傅里叶级数将其分解成多个正弦函数,如下;
b
δ
=
b
δ
1
+
b
δ
3
+
.
.
.
+
b
δ
n
=
B
δ
1
s
i
n
(
α
)
+
B
δ
3
s
i
n
(
3
α
)
+
.
.
.
+
B
δ
n
s
i
n
(
n
α
)
b_\delta=b_{\delta1}+b_{\delta3}+...+b_{\delta n}=B_{\delta1}sin(\alpha)+B_{\delta3}sin(3\alpha)+...+B_{\delta n}sin(n\alpha)
bδ=bδ1+bδ3+...+bδn=Bδ1sin(α)+Bδ3sin(3α)+...+Bδnsin(nα)通常,称
b
δ
1
b_{\delta1}
bδ1为基波分量,而
b
δ
3
b_{\delta3}
bδ3称为3次谐波分量,
b
δ
5
b_{\delta5}
bδ5为五次谐波分量,以此类推.
接下来,我们考虑第n次谐波分量下,导体A中感应电动势的瞬时值;
e
A
n
=
B
l
v
=
B
δ
n
l
v
s
i
n
(
n
α
)
=
E
n
(
m
a
x
)
s
i
n
(
n
w
t
)
=
2
E
n
s
i
n
(
n
w
t
)
e_{An}=Blv=B_{\delta n}lvsin(n\alpha)=E_{n (max)}sin(nwt)=\sqrt{2}E_nsin(nwt)
eAn=Blv=Bδnlvsin(nα)=En(max)sin(nwt)=2Ensin(nwt)其中,
E
n
E_n
En表示电动势的有效值.进一步计算其大小.
由于;
导
体
线
速
度
;
v
=
2
π
r
n
60
=
2
p
τ
n
60
=
2
τ
f
n
导体线速度;v=2\pi r \frac{n}{60}=2p\tau\frac{n}{60}=2{\tau}f _n
导体线速度;v=2πr60n=2pτ60n=2τfn其中
f
n
f_n
fn为导体中波产生的电动势频率
接下来,我们想要得到气隙每级谐波磁通量,用以化简公式,则;
谐
波
气
隙
磁
场
平
均
值
;
B
n
(
a
v
)
=
2
π
B
δ
n
气
隙
每
级
谐
波
磁
通
量
;
Φ
n
=
B
n
(
a
v
)
l
τ
τ
指
的
是
定
子
内
用
长
度
表
示
的
每
级
所
占
空
间
距
离
谐波气隙磁场平均值;B_{n(av)}=\frac{2}{\pi}B_{\delta n} \\ 气隙每级谐波磁通量;\varPhi_{n}=B_{n(av)}l \tau \\ \tau指的是定子内用长度表示的每级所占空间距离
谐波气隙磁场平均值;Bn(av)=π2Bδn气隙每级谐波磁通量;Φn=Bn(av)lττ指的是定子内用长度表示的每级所占空间距离
利用上述参数计算
E
n
E_n
En大小,
E
n
=
2
2
B
δ
n
l
v
=
2
2
π
f
n
Φ
n
=
2.22
f
n
Φ
n
E_n=\frac{\sqrt{2}}{2}B_{\delta n}lv=\frac{\sqrt{2}}{2}\pi f_n\varPhi_{n}=2.22f_n \varPhi_{n}
En=22Bδnlv=22πfnΦn=2.22fnΦn
由于,
f
n
=
n
w
2
π
=
n
f
f_n=\frac{nw}{2\pi}=nf
fn=2πnw=nf
f
f
f为基波频率。
那么`,将每个所有分量产生的电动势相加即可得到导体内部的电动势。
如下,
e
A
=
e
A
1
+
e
A
3
+
.
.
.
+
E
A
n
=
2.22
[
Φ
1
s
i
n
(
w
t
)
+
3
Φ
3
s
i
n
(
3
w
t
)
+
.
.
.
+
n
Φ
n
s
i
n
(
n
w
t
)
]
f
e_A=e_{A1}+e_{A3}+...+E_{An}=2.22[\varPhi_{1}sin(wt)+3\varPhi_{3}sin(3wt)+...+n\varPhi_{n}sin(nwt)]f
eA=eA1+eA3+...+EAn=2.22[Φ1sin(wt)+3Φ3sin(3wt)+...+nΦnsin(nwt)]f
接下来计算整距线匝感应电动势.
由于单一整距线匝原件的两个元件边处在两个磁性相反的磁极下,因此,线匝两端有效电动势为;
E
A
=
2
e
A
E_A=2e_A
EA=2eA
同样的,对应的N匝线圈感应电动势为;
E
A
=
2
N
e
A
E_A=2Ne_A
EA=2NeA
(未完待续)