图像降噪算法——图像降噪算法总结
图像降噪算法——图像降噪算法总结
前面这段时间我看了几篇和图像降噪相关的Review,给我的感觉就是SLAM这一研究领域像是一片汪洋,而图像降噪领域则是另一片汪洋,算法实在太多,刚开始让我接触这个领域会有点蒙圈。
我主要看了如下三篇Review:
《Image Denoising Review From Classical to State-of-the-art Approaches,2020》
《A Brief Review of Image Denoising Algorithms and Beyond,2019》
《Brief Review of Image Denoising Techniques,2019》
结合一些大佬的博客,我按照我的理解对图像降噪算法进行了分类,分类的目的是帮助更好掌握各个算法,每篇Review和博客对图像降噪算法的分类都不尽相同,我的也不一定完全准确,下面是按照我的理解对各个算法进行的分类:
在学习图像降噪算法之前,最好先对图像传感器有所了解,如下:
根据分类,我对其中部分算法进行学习,然后尝试基于OpenCV对算法用C++进行实践,完成了一系列博客,如下:
以上算法C++代码实现都在我的Github中,以下算法为后来补充的算法,代码暂时还没有整理到一起,如下:
图像降噪算法——DnCNN / FFDNet / CBDNet / RIDNet / PMRID / SID
图像降噪算法——Variance Stabilizing Transform / Generalization Anscombe Transform算法
最近两年在时域降噪领域还有一些非常棒的时域降噪算法,例如FastDVD,EDVR等,最近又计划先忙一些其他事情,后面有时间再继续补充。