图像降噪算法——Variance Stabilizing Transform / Generalization Anscombe Transform算法

图像降噪算法——Variance Stabilizing Transform / Generalization Anscombe Transform算法

图像降噪算法——Variance Stabilizing Transform / Generalization Anscombe Transform算法

1. 基本原理

Variance Stabilizing Transform算法指将高斯泊松噪声转化为高斯噪声的一系列算法,对该算法最早的研究开始于1918年,可以说是非常经典了,其在图像降噪上的应用可以参考坦佩雷大学Alessandro Foi组的一系列工作,著名的BM3D算法也是由这个组提出的,这里我们主要介绍其中应用较为广泛的的Generalization Anscombe Transform算法。

首先,我们知道,实际由图像传感器拍摄的图像上的噪声是接近高斯泊松噪声,高斯噪声部分好理解,通常由热噪声造成,而泊松噪声主要是由于光照响应非均匀性造成的,所谓光照响应非均匀性就是说传感器接受光子的不确定性是和信号相关的。下图就展示了高斯泊松噪声的特点,方差曲线随着均值增大而逐渐升高的部分即为泊松噪声,而方差曲线上抖动的部分即为高斯噪声。
在这里插入图片描述

  • *高斯泊松噪声数学建模如下: x ^ = a p + n \hat{x}=a p+n x^=ap+n η = x ^ − y ^ \eta=\hat{x}-\hat{y} η=x^y^其中 η \eta η就是高斯泊松噪声, x ^ \hat{x} x^为带噪图像, y ^ \hat{y} y^为无噪图像, a a a为泊松噪声增益, p ∼ P ( y ^ / a ) p \sim \mathcal{P}(\hat{y} /a) pP(y^/a)为泊松噪声部分,其均值 m m m和方差 v v v满足 m = v = y ^ / a m=v=\hat{y} /a m=v=y^/a**, n ∼ N ( m , σ ^ 2 ) n \sim \mathcal{N}\left(m, \hat{\sigma}^{2}\right) nN(m,σ^2)为高斯噪声部分

我们目前使用的大多数算法,例如NLM, BM3D,都是针对高斯噪声模型设计的,其效果在高斯泊松噪声图像上会大打折扣,如果我们能有这么一种变换将高斯泊松噪声转化为高斯噪声,对高斯噪声降噪后再将图像变换回去,不就非常完美了吗,这种变换就是Generalization Anscombe Transform算法。下面介绍该变换:

正变换 f ( x ^ ) = { 2 a a x ^ + 3 8 a 2 + σ ^ 2 − a m , x ^ > − 3 8 a − σ ^ 2 a + m 0 , x ^ ≤ − 3 8 a − σ ^ 2 a + m f(\hat{x})=\left\{\begin{array}{ll} \frac{2}{a} \sqrt{a \hat{x}+\frac{3}{8} a^{2}+\hat{\sigma}^{2}-a m}, & \hat{x}>-\frac{3}{8} a-\frac{\hat{\sigma}^{2}}{a}+m \\ 0, & \hat{x} \leq-\frac{3}{8} a-\frac{\hat{\sigma}^{2}}{a}+m \end{array}\right. f(x^)={a2ax^+83a2+σ^2am ,0,x^>83aaσ^2+mx^83aaσ^2+m如果我们对增益进行归一化 x = x ^ − m a , σ = σ ^ a x=\frac{\hat{x}-m}{a}, \sigma=\frac{\hat{\sigma}}{a} x=ax^m,σ=aσ^也就是说如果我们将输入图像归一化为一个单位泊松变量叠加一个均值为零,标准差为 σ \sigma σ的高斯噪声,那么该变换可以简化为 f σ ( x ) = { 2 x + 3 8 + σ 2 , x > − 3 8 − σ 2 0 , x ≤ − 3 8 − σ 2 f_{\sigma}(x)=\left\{\begin{array}{ll} 2 \sqrt{x+\frac{3}{8}+\sigma^{2}}, & x>-\frac{3}{8}-\sigma^{2} \\ 0, & x \leq-\frac{3}{8}-\sigma^{2} \end{array}\right. fσ(x)={2x+83+σ2 ,0,x>83σ2x83σ2
逆变换
y y y为降噪后的图像,闭合形式可以近似为 f σ ( y ) − 1 = 1 4 y 2 + 1 4 3 2 y − 1 − 11 8 y − 2 + 5 8 3 2 y − 3 − 1 8 − σ 2 f_{\sigma}(y)^{-1}= \frac{1}{4} y^{2}+\frac{1}{4} \sqrt{\frac{3}{2}} y^{-1}-\frac{11}{8} y^{-2}+\frac{5}{8} \sqrt{\frac{3}{2}} y^{-3}-\frac{1}{8}-\sigma^{2} fσ(y)1=41y2+4123 y1811y2+8523 y381σ2 σ \sigma σ y y y特别大时,其渐近逆为: f σ ( y ) − 1 = 1 4 y 2 − 1 8 − σ 2 f_{\sigma}(y)^{-1}=\frac{1}{4} y^{2}-\frac{1}{8}-\sigma^{2} fσ(y)1=41y281σ2

我们可以来看下Generalized Anscombe Transform算法正变换后方差如下图(b)所示:
在这里插入图片描述
可以看到,当 σ = 0.01 , , 1 , 2 , 3 \sigma=0.01,,1,2,3 σ=0.01,,1,2,3时,通过正变换后方差稳定在1左右,而不随 y y y发生变化了,也就是通过Generalization Anscombe Transform算法将高斯泊松噪声转变成了高斯噪声

2. matlab代码

这个算法的代码很简单,就不贴在这里了,大家可以去参考matlab代码Denoising software for Poisson and Poisson-Gaussian data,这里有两点需要注意:

  1. Generalization Anscombe Transform如果采用的是归一化形式,在处理图像时需要先对图像进行归一化操作
  2. Generalization Anscombe Transform并没有降噪效果,仅仅是改变了噪声的形态,代码中实际使用的降噪算法还是BM3D或者NLM,具体实验结果大家去看论文就好

3. 补充

  1. Anscombe Transform为Generalization Anscombe Transfrom的特殊形式,Generalization Anscombe Transform是将高斯泊松噪声转换为近似高斯分布,而Anscombe Transform可以将泊松分布转换为近似高斯分布。例如,泊松分布变量 x ∼ P ( x ^ ) x \sim \mathcal{P}(\hat{x}) xP(x^),有 m = v = x ^ m=v=\hat{x} m=v=x^,Anscombe Transform正变换为: A : x → 2 x + 3 8 A: x \rightarrow 2 \sqrt{x+\frac{3}{8}} A:x2x+83 Anscombe Transform逆变换为: A − 1 : y → ( y 2 ) 2 − 3 8 A^{-1}: y \rightarrow\left(\frac{y}{2}\right)^{2}-\frac{3}{8} A1:y(2y)283以上形式逆变换为代数逆,该逆变换会给均值引入不友好的偏置,因此还有一个精确无偏逆的闭合形式的近似解: y → 1 4 y 2 + 1 4 3 2 y − 1 − 11 8 y − 2 + 5 8 3 2 y − 3 − 1 8 y \rightarrow \frac{1}{4} y^{2}+\frac{1}{4} \sqrt{\frac{3}{2}} y^{-1}-\frac{11}{8} y^{-2}+\frac{5}{8} \sqrt{\frac{3}{2}} y^{-3}-\frac{1}{8} y41y2+4123 y1811y2+8523 y381

  2. Genrealization Anscombe Transform的推到过程可以参考博客VST变换

  3. 我们可以从另一个角度来理解高斯泊松噪声这个问题,高斯泊松噪声实际上就是信号强的地方噪声大,信号小的地方噪声小这样一个噪声分布,Generalization Anscombe Transform是通过将不同区域噪声变得一致来解决这个问题,那在设计降噪算法的时候是不是也可以通过在不同区域实施不同强度的降噪水平来解决这个问题呢?

此外,这里我写一个各种算法的总结目录图像降噪算法——图像降噪算法总结,对图像降噪算法感兴趣的同学欢迎参考

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值