在ADS中进行稳定性分析(以避免K稳定性因子的局限性)-理论部分

在ADS中进行稳定性分析(以避免K稳定性因子的局限性)-理论部分

在进行MMIC设计时,我使用经典的K因子进行稳定性判断。但是总是非常疑惑,好像高增益和稳定性不能兼得一样。即使晶体管栅长也不大,加上稳定电路增益都不到10dB了(让K因子大于1),不加能有15dB的样子,真的是难受。因此专门来学习研究一下功放稳定性的理论,并记录。

这部分理论对我还是非常难懂的,主要是自动控制部分的理论,当初没有学习过。
参考:https://www.youtube.com/watch?v=kVPzU7Eszk4&t=300s
推荐学习视频:13_奈奎斯特稳定性判据
ADS工程的官方下载链接:How to Design a Stable High Frequency Amplifier

需要我的ADS工程可以在评论区留言,只是在原来基础上小改了一下,不过大家估计不感兴趣。

1、K稳定性因子的局限性

K稳定性因子文章:Instabilities diagnosis and the role of K in microwave circuits

K因子可以依据S参数进行计算,满足以下条件即为绝对稳定:
K = 1 − ∣ S 11 ∣ 2 − ∣ S 11 ∣ 2 + ∣ Δ ∣ 2 2 ∣ S 12 S 21 ∣ > 1 K=\frac{1-|S_{11}|^2-|S_{11}|^2+|\Delta|^2}{2|S_{12}S_{21}|}>1 K=2∣S12S211S112S112+∣Δ2>1

其中:
Δ = ∣ S 11 S 22 − S 12 S 21 ∣ < 1 \Delta=|S_{11}S_{22}-S_{12}S_{21}|<1 Δ=S11S22S12S21<1

在功率放大器的设计中,很多人都只使用K稳定性因子来判断稳定性,比如之前的设计案例:
宽带Doherty放大器ADS仿真(带版图)ADS使用记录之AB类功放设计ADS使用记录之超宽带功放设计ADS使用记录之功率放大器设计等等。

但是,K稳定性因子具备局限性。只有原本的电路在开路、短路情况都稳定的时候,K因子的计算才能用于判断稳定性,原文见Stability and Power-Gain Invariants of Linear Twoports

在这里插入图片描述

因此,K因子用在实际的稳定性测试时更加准确用在设计阶段是缺乏说服力的

在实际测试时,我们可以先测量开路、短路是否稳定,然后使用S参数计算稳定性因子来判断电路在一个频段内是否绝对稳定。

在电路设计仿真时,使用K因子判断,需要默认电路在开路、短路情况下稳定,这样不严谨。

2、反馈系统的稳定性判定简易案例

在进行运算放大器、功率放大器电路的设计时,都需要进行稳定性分析,这样的系统往往都是反馈系统。可能有人以为自己没有额外在电路系统中引入反馈,但是在射频系统中反馈是无处不在的,例如微带线之间的耦合、非线性器件内部的响应等等。理想的放大器也并非单纯的电流源,存在许多内部环路
在这里插入图片描述

2.1、不稳定的简单案例

对于下面的一个简单放大器的反馈系统,我们可以计算其闭环增益(Closed-loop gain, Acl)如下图所示:
在这里插入图片描述
显然,闭环增益Acl是用下式计算的:
A c l = O u t I n = a 1 − a f Acl=\frac{Out}{In}=\frac{a}{1-af} Acl=InOut=1afa
当1-af=0时,系统的闭环增益为无穷大,由此造成了不稳定现象。

更加直观一点,举个例子:

  1. 假设一开始输入是幅度为1的正弦波,反馈回来的信号是同相的原信号1/10幅度;
  2. 那么第二次环路实际的输入是1.1,反馈回来的信号是同相的原信号1/10幅度也就是0.11;
  3. 那么第三次环路实际的输入是1.21,这样依次循环,输出就会越来越大,造成不稳定。

为充分说明系统不稳定反馈的影响,运行ADS工程中的02_Transient_AC,得到的实际的效果就是:
在这里插入图片描述
在这里插入图片描述

2.2、从Laplace域判断稳定性的简单例子

闭环增益ACL一般都是使用Laplace域来进行表征的,如:
A c l ( s ) = A ( s ) 1 − A ( s ) F ( s ) Acl(s)=\frac{A(s)}{1-A(s)F(s)} Acl(s)=1A(s)F(s)A(s)
简单回顾一下Laplace变换公式,如下:
F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t F(s)=\int_0^\infty f(t)e^{-st}dt F(s)=0f(t)estdt
当然,还有一个延迟性质的变换需要回顾:
e a t ⇔ 1 s − a e^{at}\Leftrightarrow\frac1{s-a} eatsa1
那么闭环增益ACL可以写成下面的形式:
A c l ( s ) = A ( s ) 1 − A ( s ) F ( s ) = ( s − z 1 ) ( s − z 2 ) . . . ( s − p 1 ) ( s − p 2 ) . . . Acl(s)=\frac{A(s)}{1-A(s)F(s)}=\frac{(s-z1)(s-z2)...}{(s-p1)(s-p2)...} Acl(s)=1A(s)F(s)A(s)=(sp1)(sp2)...(sz1)(sz2)...
假设一个简单的形式,我们使用延迟性质的变换分离极点并转换到时域:
K ( s − p 1 ) ( s − p 2 ) = A 1 ( s − p 1 ) + A 2 ( s − p 2 ) ⇔ A 1 e p 1 t + A 2 e p 2 t \frac{K}{(s-p1)(s-p2)}=\frac{A_{1}}{(s-p_{1})}+\frac{A_{2}}{(s-p_{2})}\Leftrightarrow A_{1}e^{p_{1}t}+A_{2}e^{p_{2}t} (sp1)(sp2)K=(sp1)A1+(sp2)A2A1ep1t+A2ep2t
那么,如果拥有右半平面的极点,p就会大于0,那么最终的结果就会指数发散,如下图右侧:
在这里插入图片描述

3、柯西幅角定理

3.1、反馈系统的框图和开环传递函数

反馈系统的框图和开环传递函数如下,参考[1](美)KATSUHIKO OGATA著;卢伯英,佟明安译. 现代控制工程 第5版[M]. 北京:电子工业出版社, 2017.05.:
在这里插入图片描述

对于上图的一般框图,类似可得闭环增益Acl(闭环传递函数)如下,其中分母的正负和2.1小节的不同,这是因为两个框图的相加点的符号不同罢了,实际是一致的:
A c l = ϕ ( s ) = G ( s ) 1 + G ( s ) H ( s ) Acl=\phi(s)=\frac{G(s)}{1+G(s)H(s)} Acl=ϕ(s)=1+G(s)H(s)G(s)

3.2、柯西幅角原理

这部分参考:奈奎斯特稳定性判据的详细推导
这位博主写的非常详细了,对小白非常友好,我这边搬点过来,hihi

3.2.1 F(s)的相角变化

先问一个问题:当s从闭合曲线 Γ 上任意一点顺时针沿 Γ 运动一周后,F(s)的相角变化了多少?
我们以一个简单的传递函数为例:
F   ( s ) = s − ( 2 + 2 j ) \mathrm{F~(s)=s-(2+2j)} F (s)=s(2+2j)

其中传递函数的零点为 z = 2 + 2j,F(s)的相角变化就是 ∠(s - z) 积累的角度,以下根据闭环曲线 Γ 与零点Z的关系分成两种情况讨论:
①若选取的闭环曲线 Γ 未包含 z = 2 + 2j ,那么随着点s在闭环曲线上运动一周,我们以z为原点建立坐标系,发现 ∠s - z 最后没有积累角度,F(s)的相角变化为0 。可以发现,这个角度实际上是先变大后变小的,最后回到0,相当于转了半天白干了
在这里插入图片描述
②若选取的闭环曲线 Γ 包含 z = 2 + 2j ,那么随着点s在闭环曲线上运动一周,s回到了原来位置上,但此时 ∠s - z 顺时针积累了2π的角度,F(s)的 相角变化为2π。虽然最后也回到了起点,但是实际上是转了一圈
在这里插入图片描述

所以我们得到结论:

  • 对于闭合曲线 Γ 外的零点和极点,对应的相角变化为0
  • 对于闭合曲线 Γ 内的零点和极点,对应的相角变化为2π

注:闭合曲线 Γ 不通过F(s)的任一零、极点。F(s)的零、极点要么在曲线里面,要么在曲线外面

3.2.2 拓展至多个零点、极点

传递函数同时有零点、极点,如何分析F(s)的相角变化?假设:
F   ( s ) = ( s − z 1 ) ( s − z 2 ) ( s − p 1 ) ( s − p 2 ) \mathrm{F~(s)=\frac{\left(s-z_1\right)\left(s-z_2\right)}{\left(s-p_1\right)\left(s-p_2\right)}} F (s)=(sp1)(sp2)(sz1)(sz2)
F(s)可以化为:
A z 1   A z 2   A p 1   A p 2   e ( φ z 1   + φ z 2   − ( φ p 1   + φ p 2   ) ) \frac{\mathrm{A_{z_1}~A_{z_2}~}}{\mathrm{A_{p_1}~A_{p_2}~}}\mathrm{e^{(\varphi^{z_1}~+\varphi^{z_2}~-(\varphi^{p_1}~+\varphi^{p_2}~))}} Ap1 Ap2 Az1 Az2 e(φz1 +φz2 (φp1 +φp2 ))
于是我们可以得到F(s)的相角变化:
δ ∠ F   ( s ) = δ ∠ ( s − z 1 )   + δ ∠ ( s − z 2 )   − δ ∠ ( s − p 1 )   − δ ∠ ( s − p 2 ) \mathrm{\delta\angle F~(s)=\delta\angle (s-z_1)~+\delta\angle (s-z_2)~-\delta\angle (s-p_1)~-\delta\angle (s-p_2)} δ∠F (s)=δ(sz1) +δ(sz2) δ(sp1) δ(sp2)
极点p1、p2作为分母,与零点z1、z2产生的相角变化相反

3.2.3 柯西幅角原理本体

F(s)绕平面原点的圈数只和F(s)被闭合曲线 Γ 包围F(s)的零点和极点的代数和有关
设F(s)有Z个零点和P个极点被 Γ 包围,则s沿曲线 Γ 顺时针运动一周时,F(s)变化的相角为 2π(P - Z),在F(s)平面上,闭合曲线 ΓF 逆时针包围原点的圈数为(也就是极点数减去零点数):
R = P − Z \mathrm{R}=\mathrm{P}-\mathrm{Z} R=PZ

  • R: ΓF 逆时针包围原点的圈数
  • P:F(s)在s平面闭合曲线 Γ 内被包围的极点数
  • Z:F(s)在s平面闭合曲线 Γ 内被包围的零点数

R > 0 和 R < 0分别表示 曲线ΓF 逆时针包围原点和顺时针包围原点的圈数,R = 0 表示曲线 ΓF 不包围原点

为什么是 ΓF 包围原点的圈数,而不是其它点呢?这段我也没搞懂,就直接背着了,原话是
因为我们计算得到F(s)相角的变化为2π的整数倍,在F(s)平面中,要使F(s)对应的点变化的相角为2π的整数倍,那么闭合曲线 ΓF 里一定要包含原点,所以我们取包含原点的圈数

3.2.4 柯西幅角原理的简单示例

下面的例子,画个圈圈住了四个零点和两个极点,那么最终的F(s)的结果·就是 R = P − Z = − 2 \mathrm{R}=\mathrm{P}-\mathrm{Z}=-2 R=PZ=2,需要顺时针绕原点两圈,如右图所示:
在这里插入图片描述

4、基于环路增益的系统稳定性判断

如何将幅角原理与系统稳定性结合起来呢?在此进行分析
这部分参考:奈奎斯特稳定性判据的详细推导

4.1、选择合适的复变函数F(s)来表征系统

4.1.1、如何选择F(s)才能与系统稳定性结合

☆ F(s)选择成:
1 + G ( s ) H ( s ) 1+\mathrm{G(s)H(s)} 1+G(s)H(s)
为什么?1+G(s)H(s)有什么特殊意义吗?
对于这样一个负反馈系统:
在这里插入图片描述

其中:
G ( s ) = s + 2 s + 5 , H ( s ) = 1 s + 4 \mathrm{G\left(s\right)=\frac{s+2}{s+5}}\quad,\quad\mathrm{H\left(s\right)=\frac{1}{s+4}} G(s)=s+5s+2,H(s)=s+41
那么:
在这里插入图片描述
发现1+G(s)H(s)的分子分母具有特殊的意义:

▷1+G(s)H(s)的零点为闭环传递函数的极点

▷1+G(s)H(s)的极点为开环传递函数的极点

那么使用1+G(s)H(s)就可以同时包含开环传函和闭环传函的极点

4.1.2、 1+G(s)H(s) 的优点

在控制系统中是利用开环传递函数来判断闭环系统的稳定性的

若我们将s平面的闭合曲线 Γ 取成整个右半平面(我理解是因为右半平面的极点会导致不稳定性

那么对于F(s)=1+G(s)H(s)来说,我们令F(s)在右半平面的零点数和极点数为 Z 和 P

如果右半平面中闭环传递函数的极点数为0,则系统稳定,即Z = 0 系统稳定

4.1.1中分析了,F(s)的极点为开环传递函数的极点,开环传输函数是已知的,即 P是已知的

在F(s)平面中,闭合曲线 ΓF 逆时针包围原点的圈数为:
R = P − Z \mathrm{R}=\mathrm{P}-\mathrm{Z} R=PZ

至此,P、Z的意义转化为:

▷R: ΓF 逆时针包围原点的圈数
▷P:开环传递函数在右半平面内的极点数,P是已知的
▷Z:闭环传递函数在右半平面内的极点数,若Z = 0系统稳定

简单来说,我们已知F(s)的极点个数(,F(s)的极点为开环传递函数的极点,开环传输函数是已知的,即 P是已知的)。随后使用柯西幅角定理可以求得包围原点的圈数R,这样就能计算得到闭环传递函数在右半平面内的极点数 Z,进而进行稳定性判断。

4.2、闭合曲线 Γ 的选择

我们只关注右半坐标轴的极点,因为这会带来不稳定。那么如何设计闭合曲线 Γ ,使得能取满整个右半平面?

幅角原理中要求闭合曲线 Γ 不通过 F(s)的任一零、极点,则 Γ 的选择与虚轴上有无零极点有关。
1. G(s)H(s) 无虚轴上的极点
我们以一个以原点为圆心,半径无穷大的半圆表示右半平面:
在这里插入图片描述
2. G(s)H(s) 有虚轴上的极点
若虚轴上有极点,为了避免闭合曲线 Γ 通过零、极点,我们可以想办法绕过去,则画一个半径无穷小的半圆绕过极点:
在这里插入图片描述

4.3、R的求取和实际的曲线绘制

R等于 ΓGH 逆时针包围F(s)平面 点(-1 , j0) 的圈数,那么我们将 ΓGH 画出来就可以计算R的大小了

这样选择无穷然后画⚪是比较书面的说法。假设我们已知了开环传输函数GH和s=jw这个简单的变换我们可以让w从0到无穷,然后绘制出传输函数的实部虚部图

clc
close all
clear

C=tf([1 1],[1 0.1]);
Sys=tf([1],[1 0.4 1]);
H=tf([1],[1 5]);
GH=C*Sys*H
% matlab自带的绘制函数
nyquist(GH)
% 自己对角度w进行扫描
w=0.001:0.001:10;
s=j*w;
my_GH=(s + 1)./(s.^4 + 5.5*s.^3 + 3.54*s.^2 + 5.3*s + 0.5);
figure
plot(real(my_GH),imag(my_GH))
hold on
w=-0.001:-0.001:-10;
s=j*w;
my_GH=(s + 1)./(s.^4 + 5.5*s.^3 + 3.54*s.^2 + 5.3*s + 0.5);
plot(real(my_GH),imag(my_GH))

在这里插入图片描述

在这里插入图片描述

可以看到上面的图没有对 点(-1 , j0) 绕圈,因此系统R=0,而给出的函数GH没有右半平面的极点,因此P=0,从而系统稳定。

4.4、不稳定的例子

对上面的函数直接乘以5:
在这里插入图片描述
得到结果是顺时针绕了两圈,因此R=-2:
在这里插入图片描述
因此:
Z = P − R = 0 + 2 = 2 \mathrm{Z}=\mathrm{P}-\mathrm{R}=0+2=2 Z=PR=0+2=2

由于闭环传递函数在右半平面内的极点数,若Z = 0系统稳定,因此上面的系统是不稳定的。

4.5、在ADS中使用奈奎斯特稳定性判据-简单案例

4.5.1、不稳定案例

对于下面的系统,由于此处使用的是合路(上面第四部分的分析是输入和反馈相减),因此R等于 ΓGH 逆时针包围F(s)平面 点(1 , j0) 的圈数
在这里插入图片描述
运行仿真,发现顺时针绕1有1圈的样子,因此R=-1:
在这里插入图片描述
对于上面的系统,仿真发现在开环时是稳定的,因此可以认为其没有在右半平面内的极点数P=0
在这里插入图片描述
因此:
Z = P − R = 0 + 1 = 1 \mathrm{Z}=\mathrm{P}-\mathrm{R}=0+1=1 Z=PR=0+1=1

由于闭环传递函数在右半平面内的极点数,若Z = 0系统稳定,因此上面的系统是不稳定的。在ADS中将环路连接上去:
在这里插入图片描述

仿真发现是不稳定的,判断有效:
在这里插入图片描述

4.5.2、稳定案例

修改FeedBack电路:
在这里插入图片描述
重新在开路情况下仿真,发现结果不绕(1,0)有圈数:
在这里插入图片描述
在这里插入图片描述
因此系统稳定:
Z = P − R = 0 + 0 = 0 \mathrm{Z}=\mathrm{P}-\mathrm{R}=0+0=0 Z=PR=0+0=0
为了对判断进行验证,加上反馈
在这里插入图片描述
发现是非常稳定的:
在这里插入图片描述

  • 0
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

怡步晓心l

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值