在上一个连载里面,我们讨论了时变电磁场的能量关系。但是问题来了,时变时变,你可以随时间任意怎么变都行,然而,别忘了我们的初衷——用电磁波携带信息,那么最自然的载体就是正余弦波了。因此,后续我们的讨论就开始针对时谐变电磁场啦
所谓时谐变电磁场,就是场量随时间 t t t 按照正弦或者余弦的规律变化。 但是,我们大多数教材里面,一上来就是一堆容易混淆的概念:什么有效值、复振幅、瞬时值、、、特别容易混淆,那么今天我们就来扫一扫盲,彻底分清楚这些量到底是什么形式,以及他们之间的关系。
首先,我们以电场为例(因为磁场也是一样的),既然是时谐变(我们在后文都以余弦函数为基准),那么电场强度的大小肯定是一个余弦函数。那么,我们以 x x x 方向的电场为例子:
首先看看时谐变电场在
x
x
x 方向的电场强度大小如何表示:
如果带上方向,那么就表示
x
x
x 方向电场的瞬时值:
如果我们关心这个电场的振幅,那么很明显,振幅的幅值就是
E
x
m
E_{xm}
Exm,相角是
φ
x
φ_x
φx,如果表示成复数的形式,就是我们所说的复振幅(上面加一个小点表示复数):
那么,如果我们给这个复振幅带上方向,那么就构成了我们所说的复振幅矢量:
而我们提到的复有效值矢量和复振幅矢量仅仅相差了一个系数
2
\sqrt{2}
2:
而瞬时值和复振幅矢量又可以有这样的转换关系(这个关系非常重要!)
使用复数形式表示能够运算带来不小的便利,首先就是复数表示时,各场量已经与时间无关,我们可以把对时间求导那个东西换成一个系数:
我们回顾一下之前我们的
M
a
x
w
e
l
l
Maxwell
Maxwell 方程,他们会对瞬时值求导。但是,如果转成复数形式,那么我们发现只有
e
j
ω
t
e^{jωt}
ejωt 这一部分才和时间有关,那么求导就可以简化成:
当然,使用复数分析的好处还有很多,还需要大家自己练习的时候加以体会了。
那么,其实我们的
M
a
x
w
e
l
l
Maxwell
Maxwell 方程也就可以转化相应的复数形式了。
同时,本构关系中的介电常数和磁导率将会发生一些变化 —— 严格来说:只有在理想介质下,
ε
ε
ε 和
μ
μ
μ 才是实数;对于有耗介质,在高频时,
ε
ε
ε 和
μ
μ
μ将变成复数,且随着角频率的变化而变化。
同样地,因为我们刚刚提到,复振幅矢量和复有效值矢量之间就仅仅相差了一个系数,所以很多教材也可以表示成复有效值矢量的形式。
那么这就是今天连载的全部内容啦!在下一个连载里面,我们就来看看,既然电磁场有复数表示,那么坡印廷矢量的复数又是什么样的呢?