【声辐射】——不同坐标系下的格林函数

概述

本文整理了不同坐标系下Helmholtz方程对应的格林函数
( ∇ 2 + k 2 ) G ( x ) = δ ( x ) (\nabla^2+k^2)G(x)=\delta (x) (2+k2)G(x)=δ(x)

直角坐标系(描述一维无限区域)

物理背景:在 x = x 0 x=x_0 x=x0位置处放置一个平行于YOZ平面的无限大面声源, G ( x , x 0 ) G(x,x_0) G(x,x0)为其产生的声场,声压不随 y y y z z z方向的坐标变化,波阵面垂直于 x x x轴,即沿 x x x方向传播的平面波。
d 2 G ( x , x 0 ) d x 2 + k 2 G ( x , x 0 ) = δ ( x − x 0 ) \frac{d^2G(x,x_0)}{d x^2}+k^2G(x,x_0)=\delta (x-x_0) dx2d2G(x,x0)+k2G(x,x0)=δ(xx0)
G ( x , x 0 ) = j 2 k e ± j k ∣ x − x 0 ∣ G(x,x_0)=\frac{j}{2k}e^{\pm jk|x-x_0|} G(x,x0)=2kje±jkxx0
注:正负号代表传播方向,具体方向要看表达式中 ω t \omega t ωt前面的正负号。

  • 平面波按柱面波展开
    e j k x = J 0 ( k ρ ) + 2 ∑ m = 0 ∞ j m J m ( k ρ ) c o s ( m φ ) e^{jkx}=J_0(k\rho)+2\sum_{m=0}^{\infty} j^mJ_m(k\rho)cos(m\varphi) ejkx=J0(kρ)+2m=0jmJm(kρ)cos(mφ)
    其中, J m ( k ρ ) J_m(k\rho) Jm(kρ)是柱贝塞尔函数,物理意义是柱面波的驻波声场(可以展开成柱汉克尔函数,物理意义为柱面波的行波声场);而 x = ρ c o s ( φ ) x=\rho cos(\varphi) x=ρcos(φ) ρ \rho ρ对应径长, φ \varphi φ对应极角,将直角坐标系转换成了柱坐标系。

  • 平面波按球面波展开
    e i k z = e i k r c o s θ = ∑ l = 0 ∞ i l ( 2 l + 1 ) j l ( k r ) P l ( c o s θ ) e^{ikz}=e^{ikrcos\theta}=\sum_{l=0}^{\infty} i^l(2l+1)j_l(kr)P_l(cos\theta) eikz=eikrcosθ=l=0il(2l+1)jl(kr)Pl(cosθ)
    其中, j l ( k r ) = π 2 k r J l + 1 2 ( k r ) j_l(kr)=\sqrt{\frac{\pi}{2kr}}J_{l+\frac{1}{2}}(kr) jl(kr)=2krπ Jl+21(kr)是球贝塞尔函数,物理意义是球面波的驻波声场。

柱(极)坐标系(描述二维无限区域)

物理背景:在原点放置一个与 z z z轴平行的无限长的线声源,声场与极角 φ \varphi φ无关, G ( k ρ ) G(k\rho) G(kρ)为其产生的柱面波。
1 ρ d d ρ ( ρ d G ( k ρ ) d ρ ) + k 2 G ( k ρ ) = − δ ( ρ ) 2 π ρ \frac{1}{\rho}\frac{d}{d\rho}(\rho \frac{dG(k\rho)}{d\rho})+k^2G(k\rho)=-\frac{\delta(\rho)}{2\pi \rho} ρ1dρd(ρdρdG(kρ))+k2G(kρ)=2πρδ(ρ)
d 2 G d ρ 2 + 1 ρ d G d ρ + k 2 G = 0      , ρ > 0 \frac{d^2G}{d\rho^2}+\frac{1}{\rho}\frac{dG}{d\rho}+k^2G=0\ \ \ \ ,\rho>0 dρ2d2G+ρ1dρdG+k2G=0    ,ρ>0
上述方程的解是0阶贝塞尔函数,为了描述行波,故用0阶汉克尔函数去描述解的通式。根据信号与系统柜求解冲激响应的方法,可以知道通过 G ′ ( 0 + ) = 1 G^{'}(0_+)=1 G(0+)=1可以求出通式前面的的系数,即:
G ( k ρ ) = i 4 H 0 ( 1 ) ( k ρ ) G(k\rho)=\frac{i}{4}H_0^{(1)}(k\rho) G(kρ)=4iH0(1)(kρ)

  • 柱面波按平面波进行展开
    H 0 ( 1 ) ( k ρ ) = 1 π ∫ − ∞ ∞ e i ( k x x + k y y ) k y d k y H_0^{(1)}(k\rho)=\frac{1}{\pi}\int_{-\infty}^{\infty} \frac{e^{i(k_xx+k_yy)}}{k_y}{\rm d k_y} H0(1)(kρ)=π1kyei(kxx+kyy)dky
    即角谱法,可以通过傅里叶变换证明,也可以通过求得二维无限区域的Helmholtz方程在直角坐标系下的解等价之来证明。
球坐标系(描述三维无限区域)

物理背景:在原点放置一个点声源,声场与 φ , θ \varphi,\theta φ,θ无关, G ( k r ) G(kr) G(kr)为球面波。
1 r 2 d d r ( r 2 d G ( k r ) d r ) + k 2 G ( k ρ ) = − δ ( r ) 4 π r 2 \frac{1}{r^2}\frac{d}{dr}(r^2 \frac{dG(kr)}{dr})+k^2G(k\rho)=-\frac{\delta(r)}{4\pi r^2} r21drd(r2drdG(kr))+k2G(kρ)=4πr2δ(r)
G ( k r ) = e j k r 4 π r G(kr)=\frac{e^{jkr}}{4\pi r} G(kr)=4πrejkr
实际上,三维无限空间下的格林函数 G ( k r ) G(kr) G(kr)也可以用球汉克尔函数 h 0 ( 1 ) ( k r ) h_0^{(1)}(kr) h0(1)(kr)去表示,只是可以化简:
h 0 ( 1 ) ( k r ) = e j k r j r h_0^{(1)}(kr)=\frac{e^{jkr}}{jr} h0(1)(kr)=jrejkr

  • 球面波按平面波展开
    e j k r r = ∬ j 2 π k z e j ( k x x + k y y ± k z z ) d k x d k y \frac{e^{jkr}}{r}=\iint \frac{j}{2\pi k_z}e^{j(k_xx+k_yy\pm k_zz)}{ \rm dk_x d k_y} rejkr=2πkzjej(kxx+kyy±kzz)dkxdky
    角谱法,没什么好解释的。
  • 球面波按柱面波展开
    e j k r r = i ∫ 0 ∞ J 0 ( k ρ ρ ) e i k z ∣ z ∣ k z k ρ d k ρ = i 2 ∫ − ∞ ∞ 1 k z H 0 ( 1 ) ( k ρ ρ ) e j ( k z z ) k ρ d k ρ \frac{e^{jkr}}{r}=i\int_0^{\infty} J_0(k_\rho \rho)\frac{e^{ik_z|z|}}{k_z}k_\rho {\rm d k_\rho}=\frac{i}{2}\int_{-\infty}^\infty \frac{1}{k_z}H_0^{(1)}(k_\rho \rho)e^{j(k_zz)}k_\rho{ \rm dk_\rho } rejkr=i0J0(kρρ)kzeikzzkρdkρ=2ikz1H0(1)(kρρ)ej(kzz)kρdkρ
    在球面波反射那篇博文中有这个展开式的应用。

Reference:
一本不知来源的数学物理方程书中的格林函数篇

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值