【声辐射】——格林函数、泊松公式及基尔霍夫-亥姆霍兹积分公式

本文深入探讨了格林函数在声学中的应用,包括点声源的声场描述,瞬态与稳态点声源对应的格林函数,以及如何利用泊松公式求解有源波动方程的解。通过基尔霍夫-亥姆霍兹积分公式,阐述了在含有边界条件下求解声场的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


同样是相互关联的三样东西,故整理置一起,老师说这个东西很重要,但数物里面并没有讲,全靠自学。。。

格林函数

概述: 类比于力学中的质点和电学中的点电荷,点声源激发的声场叫做格林函数。

  • 点声源
    点源强度 Q = 4 π r 0 2 V 0 Q=4\pi r_0^2V_0 Q=4πr02V0,是常数,它代表声源体积变化速度的幅度。点声源的声场是:
    P ( r ) = − j ω ρ 0 Q e j k r 4 π r P(r)=-j\omega \rho_0 Q \frac{e^{jkr}}{4\pi r} P(r)=jωρ0Q4πrejkr

  • 瞬态点声源 ( r ⃗ , t ) (\vec{r},t) (r ,t)对应的格林函数
    瞬时点声源在 t ′ t' t时刻,在 r ′ ⃗ \vec{r'} r 位置激发的声场,格林函数 g ( r ⃗ , t ; r ′ ⃗ , t ′ ) g(\vec{r},t;\vec{r'},t') g(r ,t;r ,t)满足方程,解为:
    ∇ 2 g − 1 c 2 ∂ 2 g ∂ t 2 = − δ ( r ⃗ − r ′ ⃗ ) δ ( t − t ′ ) \nabla^2 g-\frac{1}{c^2}\frac{\partial^2 g}{ \partial t^2} =-\delta(\vec{r}-\vec{r'})\delta(t-t') 2gc21t22g=δ(r r )δ(tt)
    g ( r ⃗ , t ; r ′ ⃗ , t ′ ) = g ( r ⃗ − r ′ ⃗ , t − t ′ ) = δ ( t − t ′ − R c ) 4 π R g(\vec{r},t;\vec{r'},t')=g(\vec{r}-\vec{r'},t-t')=\frac{\delta(t-t'-\frac{R}{c})}{4\pi R} g(r ,t;r ,t)=g(r r ,tt)=4πRδ(ttcR)
    其中, R = ∣ r ⃗ − r ′ ⃗ ∣ R=|\vec{r}-\vec{r'}| R=r r

  • 稳态点声源 ( r ⃗ , ω ) (\vec{r},\omega) (r ,ω)对应的格林函数
    强度 Q = − 1 j ω ρ 0 Q=-\frac{1}{j\omega \rho_0} Q=jωρ01位于 r ′ ⃗ \vec{r'} r 的稳态点声源激发的声场,格林函数 G ( r ⃗ , r ′ ⃗ ; ω ) G(\vec{r},\vec{r'};\omega) G(r ,r ;ω)满足方程,其解为:
    ∇ 2 G + k 2 G = − δ ( r ⃗ − r ′ ⃗ ) \nabla^2G+k^2G=-\delta(\vec{r}-\vec{r'}) 2G+k2G=δ(r r )
    G ( r ⃗ , r ′ ⃗ ; ω ) = e j k R 4 π R G(\vec{r},\vec{r'};\omega)=\frac{e^{jkR}}{4\pi R} G(r ,r ;ω)=4πRejkR

泊松公式

概述:利用格林函数求解有源波动方程的解,对源在空间和时间上用 δ \delta δ函数进行分解,然后对格林函数进行空间和时间积分,本质为线性系统满足叠加定理。(可用信号与系统的思想进行理解,格林函数类似于冲激响应,只不过格林函数的维度更多)

  • 对声源的分解
    δ \delta δ函数对声源在空间和时间上分解:
    f ( r ⃗ , t ) = ∫ ∭ f ( r ′ ⃗ , t ′ ) δ ( r ⃗ − r ′ ⃗ ) δ ( t − t ′ ) d r ′ ⃗ d t ′ f(\vec{r},t)=\int \iiint f(\vec{r'},t')\delta(\vec{r}-\vec{r'})\delta(t-t') {\rm d}\vec{r'} {\rm d}t' f(r ,t)=f(r ,t)δ(r r )δ(tt)dr dt

  • 瞬态解的泊松公式
    ∇ 2 p ( r ⃗ , t ) − 1 c 2 ∂ 2 p ( r ⃗ , t ) ∂ t 2 = f ( r ⃗ , t ) \nabla^2 p(\vec{r},t)-\frac{1}{c^2}\frac{\partial^2 p(\vec{r},t)}{ \partial t^2} =f(\vec{r},t) 2p(r ,t)c21t22p(r ,t)=f(r ,t)
    p ( r ⃗ , t ) = ∫ ∭ f ( r ′ ⃗ , t ′ ) g ( r ⃗ , t ; r ′ ⃗ , t ′ ) d r ′ ⃗ d t ′ = ∫ ∭ f ( r ′ ⃗ , t ′ ) δ ( t − t ′ − R c ) 4 π R d r ′ ⃗ d t ′ p(\vec{r},t)=\int \iiint f(\vec{r'},t')g(\vec{r},t;\vec{r'},t'){\rm d}\vec{r'} {\rm d}t'=\int \iiint f(\vec{r'},t')\frac{\delta(t-t'-\frac{R}{c})}{4\pi R}{\rm d}\vec{r'} {\rm d}t' p(r ,t)=f(r ,t)g(r ,t;r ,t)dr dt=f(r ,t)4πRδ(ttcR)dr dt
    上述解为零状态响应,对于初始状态,同样可以用 δ \delta δ函数去模拟,当然也可直接求通解。

  • 稳态解的泊松公式
    ∇ 2 P + k 2 P = − F ( r ⃗ ) \nabla^2P+k^2P=-F(\vec{r}) 2P+k2P=F(r )
    P ( r ⃗ ) = ∭ F ( r ′ ⃗ ) G ( r ⃗ , r ′ ⃗ ; ω ) d r ′ ⃗ = ∭ F ( r ′ ⃗ ) e j k R 4 π R d r ′ ⃗ P(\vec{r})=\iiint F(\vec{r'})G(\vec{r},\vec{r'};\omega){\rm d} \vec{r'}=\iiint F(\vec{r'})\frac{e^{jkR}}{4\pi R}{\rm d} \vec{r'} P(r )=F(r )G(r ,r ;ω)dr =F(r )4πRejkRdr

基尔霍夫-亥姆霍兹积分公式

针对含有边界的空间的情况,求解声场
P ( r ⃗ ) = ∭ V 1 F 1 ( r ′ ⃗ ) G ( r ⃗ , r ′ ⃗ ; ω ) d r ′ ⃗ + ∯ S ( ∂ P ( r ′ ⃗ ) ∂ n r ′ G ( r ⃗ , r ′ ⃗ ; ω ) − P ( r ′ ⃗ ) ∂ G ( r ⃗ , r ′ ⃗ ; ω ) ∂ n r ′ ) d r ′ ⃗ P(\vec{r})=\iiint_{V1} F_1(\vec{r'})G(\vec{r},\vec{r'};\omega){\rm d}\vec{r'}+\oiint_S (\frac{\partial P(\vec{r'})}{\partial n_{r'}}G(\vec{r},\vec{r'};\omega)-P(\vec{r'})\frac{\partial G(\vec{r},\vec{r'};\omega)}{\partial n_{r'}}) {\rm d}\vec{r'} P(r )=V1F1(r )G(r ,r ;ω)dr + S(nrP(r )G(r ,r ;ω)P(r )nrG(r ,r ;ω))dr

  • 利用无限空间格林函数
    去无限空间中的格林函数 G ( r ⃗ , r ′ ⃗ ; ω ) = e j k R 4 π R G(\vec{r},\vec{r'};\omega)=\frac{e^{jkR}}{4\pi R} G(r ,r ;ω)=4πRejkR,则声场可以描述为:
    P ( r ⃗ ) = ∭ V 1 F 1 ( r ′ ⃗ ) e j k R 4 π R d r ′ ⃗ + ∯ S ( ∂ P ( r ′ ⃗ ) ∂ n r ′ e j k R 4 π R − P ( r ′ ⃗ ) ∂ e j k R 4 π R ∂ n r ′ ) d r ′ ⃗ P(\vec{r})=\iiint_{V1} F_1(\vec{r'})\frac{e^{jkR}}{4\pi R}{\rm d}\vec{r'}+\oiint_S (\frac{\partial P(\vec{r'})}{\partial n_{r'}}\frac{e^{jkR}}{4\pi R}-P(\vec{r'})\frac{\partial \frac{e^{jkR}}{4\pi R}}{\partial n_{r'}}) {\rm d}\vec{r'} P(r )=V1F1(r )4πRejkRdr + S(nrP(r )4πRejkRP(r )nr4πRejkR)dr
    面积分是 S S S面上的声压分布和法向速度对 r ⃗ \vec{r} r 点声压的贡献,表面法向速度的贡献相当于点源,表面声压贡献相当于偶极子源。
    意义:
    如果知道空间的分布声源和表面上的声压和法向速度,由基尔霍夫-亥姆霍兹积分公式可以得到空间中任一点的声压。但是,在辐射问题中只知道表面的法向速度或声压,不能同时知道两者。
    事实上,作为二阶偏微分方程问题,边界上只能给定一个条件,如果给定了声压,空间的声场就已经确定,界面上的法向速度也确定了。
    因此基尔霍夫-亥姆霍兹积分公式不能用来确定声场,它不是边界问题的解,而是声场必须满足的积分方程。

  • 有限空间的格林函数
    找到一个格林函数 G 1 ( r ⃗ , r ′ ⃗ ; ω ) G_1(\vec{r},\vec{r'};\omega) G1(r ,r ;ω) S S S上满足边界条件 G 1 ( r ⃗ , r ′ ⃗ ; ω ) ∣ r ⃗ ∈ S = 0 \left. G_1(\vec{r},\vec{r'};\omega) \right| _{\vec{r} \in S}=0 G1(r ,r ;ω)r S=0,则:
    P ( r ⃗ ) = ∭ V 1 F 1 ( r ′ ⃗ ) G 1 ( r ⃗ , r ′ ⃗ ; ω ) d r ′ ⃗ − ∯ S P ( r ′ ⃗ ) ∂ G 1 ( r ⃗ , r ′ ⃗ ; ω ) ∂ n r ′ d r ′ ⃗ P(\vec{r})=\iiint_{V1} F_1(\vec{r'})G_1(\vec{r},\vec{r'};\omega){\rm d}\vec{r'}-\oiint _SP(\vec{r'})\frac{\partial G_1(\vec{r},\vec{r'};\omega)}{\partial n_{r'}} {\rm d}\vec{r'} P(r )=V1F1(r )G1(r ,r ;ω)dr SP(r )nrG1(r ,r ;ω)dr
    上式为已知边界上的声压的声场,但需要求得满足对应边界条件的格林函数。

  • 假想界面的意义
    若上述中的 S S S不是实际的边界,而是无界空间中的一个假想的界面,其内外分别是 V 1 V_1 V1 V 2 V_2 V2,两部分中的分布声源分别是 F 1 F_1 F1 F 2 F_2 F2,则可以得到空间中的声场是:
    P ( r ⃗ ) = ∭ V 1 F 1 ( r ′ ⃗ ) e j k R 4 π R d r ′ ⃗ + ∭ V 2 F 2 ( r ′ ⃗ ) e j k R 4 π R d r ′ ⃗ P(\vec{r})=\iiint_{V1} F_1(\vec{r'})\frac{e^{jkR}}{4\pi R}{\rm d}\vec{r'}+\iiint_{V2} F_2(\vec{r'})\frac{e^{jkR}}{4\pi R}{\rm d}\vec{r'} P(r )=V1F1(r )4πRejkRdr +V2F2(r )4πRejkRdr
    对于封闭曲面 S S S内部的一些声源对 S S S外部的作用可以用分布在 S S S上的点源和偶极子源代替
    ∯ = { ∭ V 2 F 2 ( r ′ ⃗ ) e j k R 4 π R d r ′ ⃗ r ⃗ ∈ V 1 ∭ V 1 F 1 ( r ′ ⃗ ) e j k R 4 π R d r ′ ⃗ r ⃗ ∈ V 2 \oiint=\left\{ \begin{aligned} & \iiint_{V2} F_2(\vec{r'})\frac{e^{jkR}}{4\pi R}{\rm d}\vec{r'} &\vec{r} \in V_1\\ & \iiint_{V1} F_1(\vec{r'})\frac{e^{jkR}}{4\pi R}{\rm d}\vec{r'} &\vec{r} \in V_2 \\ \end{aligned} \right. =V2F2(r )4πRejkRdr V1F1(r )4πRejkRdr r V1r V2

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值