项目简介
如今消费者对皮革产品的质量要求越来越高,个性化需求的增加,制造商需要更精确地检测和处理每一块皮革,以确保其符合特定标准。
但人工检测方式存在效率低、准确率不高、一致性差等问题;传统算法通常需要针对特定任务进行调整,缺乏灵活性,难以快速适应新的外观检测需求或变化的产品特征。通过AI外观检测高效、精准和一致的检测能力,可帮助企业提高生产效率和产品质量,在激烈的市场竞争中保持竞争优势。
数据准备
检测范围:破损、褶皱、脏污等缺陷;
为同时进行破损、褶皱、脏污等缺陷检测和其像素级分割,采用多边形标注和实例分割模型方式实现。缺陷样本分配好标签后,采用labelmeAI 进行数据标注,labelmeAI支持AI模型辅助标注,与传统标注相比可提高5-10倍工作效率。
数据分析
数据分析,可以识别数据集中可能存在的偏见,从而采取措施确保模型的公平性和可解释性,了解各个特征的分布情况,有助于选择合适的预处理方法。
通过 数据分析 功能进行图像预览,统计标注数据,获取图像尺寸为 4