大模型SFT用chat版还是base版 SFT后灾难性遗忘怎么办

大模型SFT用chat版还是base版

进行 SFT 时,基座模型选用 Chat 还是 Base 模型?

选 Base 还是 Chat 模型,首先先熟悉 Base 和 Chat 是两种不同的大模型,它们在训练数据、应用场景和模型特性上有所区别。

在训练数据方面,Base 模型是基于海量语料库进行的无监督学习。它从大量文本中学习语言模式和知识,而不需要人工标注或监督。

相比之下,Chat 模型则是在指令微调的有监督学习下进行训练的。这意味着它使用人工标注的数据集进行训练,以便更好地理解和响应特定指令。

在应用场景上,Base 模型主要用于无监督学习任务,如文本分类、情感分析、摘要生成等。这些任务主要关注文本内容的理解和处理,而不需要对特定指令做出响应。

相反,Chat 模型则主要用于指令学习任务,如问答系统、对话生成、智能客服等。在这些任务中,模型需要理解和响应人类的指令,以提供准确和有用的信息。

在模型特性上,Base 模型预训练之后没有做任何调整。它提供了基本的语言理解和生成能力,但可能需要针对特定任务进行微调或优化。

而 Chat 模型则是在 Base 模型上进行微调的版本,它通过指令微调和人工反馈强化学习等方法,使模型更加符合人类的价值观和指令要求。

另一种说法是 base 模型可以更方便做知识注入,而 chat 版本是做过对其的,不好做知识注入。

所以基于 base 的 SFT 可以做的上限更高,更方便做知识的注入,而基于 chat 模型的 SFT 是做的样式学习或者指令学习。

但是 base 也存在没有对其的风险,输出可能和希望有差距,需要更多的调优和对齐。

SFT后灾难性遗忘怎么办

1. 更改模型结构和参数高效微调(PEFT)

通过部分参数调整保留预训练知识,降低对原始模型权重的破坏:

  • LoRA:通过低秩矩阵更新权重,仅训练少量新增参数,保留大部分预训练参数。
  • Adapter-Tuning:在模型各层插入小型适配器模块,仅训练适配器参数。
  • LoRAMoE:结合混合专家(MoE)与LoRA,将专家分为两组,分别处理通用知识和新任务,通过路由机制动态分配权重,减少参数冲突。
  • 弹性权重固化(EWC,Elastic Weight Consolidation):通过引⼊正则化项,限制模型参数的变动范围,以保护之前学习到的知识。这种⽅法可以在微调过程中平衡新任务和旧任务之间的重要性

2. 数据策略优化

调整训练数据的分布和结构以平衡新旧知识:

  • 混合通用数据:在SFT数据中保留一定比例的通用任务数据(如对话、问答),防止模型过度偏向特定领域。
  • 多任务联合训练:同时微调多个任务(如翻译、摘要、推理),增强模型的泛化能力。
  • 数据重放(Replay):定期将通用数据重新输入模型进行训练,类似“知识复习”。

3. 训练方式

通过架构设计缓解遗忘:

  • SDFT(自我蒸馏):利用原始模型对任务数据生成回复,构建自我蒸馏数据集,使任务数据分布更接近原始模型,减少分布偏移。
  • 渐进式训练:分阶段微调,先训练适配层,再逐步解冻部分预训练层,避免一次性全参数更新。

参考文档

  1. SFT索命14问,给跪了
  2. ⼤模型(LLMs)基础
### 大模型 Supervised Fine-Tuning (SFT) 技术实现方法 #### 1. SFT 的定义与作用 Supervised Fine-Tuning(简称 SFT)是一种针对预训练大模型的微调技术,旨在利用标注数据集进一步优化模型性能。通过引入高质量的人工标注数据,SFT 能够使模型更好地适应特定任务或领域需求[^1]。 #### 2. 数据准备 SFT 需要精心设计的数据集来引导模型学习目标行为。这些数据通常以问答对的形式存在,具体格式可以采用 JSON 或 CSV 文件表示。每条记录包含以下几个部分: - **Instruction**: 描述任务背景或上下文信息。 - **Input**: 提供给模型的具体问题或输入内容。 - **Output**: 对应于 Input 的理想输出结果。 - **System**: 可字段,用于指定系统的角色或身份设定。 例如,一条典型的 SFT 训练样本可能如下所示: ```json { "instruction": "客服场景:用户想修改收货地址", "input": "我的收货地址填错了,怎么修改?", "output": "请登录账号,在订单详情页点击...", "system": "你是一名电商客服助手" } ``` 此结构有助于清晰表达交互逻辑并提高模型理解能力[^4]。 #### 3. 微调过程概述 在执行 SFT 过程中,主要涉及以下环节: ##### a. 基础模型择 可以择已有的大规模预训练语言模型作为起点,比如 GPT、LLaMA 或 PaLM 等。如果希望保持较强的泛化能力和较低程度的灾难性遗忘风险,则推荐优先Base Model;而对于高度专业化应用场景而言,Chat Model 也可能是一个合理项[^3]。 ##### b. 参数调整策略 为了平衡效率与效果之间的关系,在实际操作需谨慎设置超参数配置。这包括但不限于批量大小(batch size)、学习率(learning rate)以及迭代次数(epoch number)等方面的择。此外还需注意不同子任务间的权重分配比例等问题,确保最终得到的结果能够满足预期标准。 ##### c. 损失函数构建 损失函数的设计对于监督式微调至关重要。一般情况下会采用交叉熵(cross entropy loss),它能有效衡量预测分布同真实标签之间差距的程度。同还可以加入正则项(regularization term)防止过拟合现象发生。 ##### d. 测试评估机制建立 完成初步训练之后应当进行全面验证测试工作,以此确认改进后的本确实具备更强针对性解决实际问题的能力。常用的度量指标有精确率(precision)、召回率(recall)、F1分数(F1 score)等[^2]。 #### 4. 注意事项 尽管 SFT 方法简单易行且成效显著,但在实施过程中仍有一些潜在挑战需要注意规避: - 如果仅依赖少量定制化的样本来开展项目可能会导致欠采样的情况出现; - 当前主流框架下可能存在计算资源消耗较大这一缺点; - 特定条件下可能发生所谓“灾难性遗忘”,即原有知识体系遭到破坏而无法正常运作的现象。 --- ### 示例代码片段 下面提供了一个简单的 PyTorch 实现方案供参考: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def load_model(model_name="gpt2"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model tokenizer, model = load_model() # Define training loop with custom dataset here... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值