
论文阅读笔记
文章平均质量分 93
文献笔记
robot.zhoy
敲出点点滴滴,码出怦然心动
展开
-
论文精读[2022-1116]Unified Focal loss: Generalising Dice and cross entropy-based losses to handle ...
针对医学数据集中存在的类别不均衡问题,将应用较广的几种损失函数联合在同一个框架体系,进而优并提出统一焦点损失函数原创 2022-11-22 15:27:27 · 1829 阅读 · 1 评论 -
rep论文阅读4:RepVGG:Making VGG-style ConvNets Great Again
利用结构重参数化“复兴”VGG式单路极简架构,一路3x3卷到底,在速度和性能上达到SOTA水平原创 2022-05-06 01:36:09 · 808 阅读 · 0 评论 -
rep论文阅读2:ResRep_Lossless CNN Pruning via Decoupling Remembering and Forgetting
ResRep展示了结构重参数化的另一种用途:构造额外结构,为某种花式操作提供空间,以达成我们的某些目的,为模型赋予某些性质。原创 2022-05-05 21:14:51 · 696 阅读 · 0 评论 -
rep论文阅读1:ACNet_Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks
结构重参数化系列论文1:ACNet原创 2022-05-05 20:38:49 · 649 阅读 · 0 评论 -
Winograd算法的应用:Fast Algorithms for Convolutional Neural Networks
Winograd算法:神经网络的快速卷积算法输入图像为:n x n卷积核为:f x f其中s为步长,c为通道数,p为填充数原创 2020-12-15 14:12:35 · 1431 阅读 · 1 评论 -
论文笔记:Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural Networks
论文笔记:Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural Networks一、扫盲:Winograd 算法1. 表达式:2. 举例:F(2×2,3×3)注:F(m×m,r×r),m为Output Size,r为Filter Size(1)先写成矩阵乘法,见下图将卷积核的元素拉成一列,将输入信号每个滑动窗口中的元素拉成一行(2)图解(3)结论Winograd算法的乘法次数为16(上图4×4),而直接卷积的原创 2020-12-13 00:33:30 · 2725 阅读 · 1 评论 -
文献阅读1 SqueezeNet:一种参数量只有AlexNet的1/50且模型小于0.5MB的网络
文献阅读1 SqueezeNet:一种参数量只有AlexNet的1/50且模型小于0.5MB的网络一、基本信息二、笔记正文总结总结三、笔记概览二级目录三级目录一、基本信息信息内容论文名称SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size论文链接https://www.researchgate.net/publication/301878495代码链接原创 2020-11-07 20:28:07 · 910 阅读 · 2 评论 -
论文阅读笔记1:(深度压缩:用剪枝、训练量化和Huffman编码压缩深度神经网络)
原创 2020-10-07 18:10:00 · 251 阅读 · 0 评论