可转债策略之---(摊饼玩法,溢价玩法,强赎玩法,下修玩法,双低玩法)

什么是可转债

可转债的债券和转换特性对应着债权和期权的双重特性,也就是可转债价值=债券价值+股票看涨期权。我用白话来说,可转债就是公司向你借钱给您的一个借条,这个利率不得低于当期货币利率,也就是说必须比你支付宝买的货币基金收益要高。下面通过五个玩法来分别介绍可转债的其他性质。

摊饼玩法

可转债的初始发行价格是100元。摊饼玩法的核心是当可转债批量低于100元的时候,你分批买入所有在100元以下的可转债(当然越低越好)。
这个时候你可能遇到的情况:
价格继续下跌,比方说跌倒了90元,但是当期结束,他必须以110元的价格向你支付本金加利息。你的收益在10%+
价格上涨,到了130元以上,或者有20%+收益的时候做价格保利,比方说你可以设定只要价格不低于120,那你就一直持有,价格跌破120卖出。随着价格上涨,你不断提高自己的止盈位置。直到最后保利出局。这个时候你的收益肯定在20%+

强赎玩法

在摊饼玩法的基础上,可以有强赎玩法,当价格在130元以上时,可能会有强制赎回,这个时候要及时卖出。因为这个强制赎回会以很低的价格赎回你手中的债券,比方说现在价格是130,那么他赎回价格很可能就101,如果不卖出就要承受很大的损失。
强赎策略其实是有很强的逻辑的。首先,可转债发行条件十分苛刻。基本上只有十分优秀的公司才能发行,4000+公司只有300多公司可以发行可转债。另外一个所有公司都希望发行可转债,因为,这个钱借了可以不用换,那么为什么不用换呢?因为可以债转股,就是他希望向你借钱后,现在价格130多了,你全部换成股票吧,你已经赚了30%+了,你不要逼我强赎呀,强赎我就要真金白金给你钱,但是你换成股票后我就不用还钱啦。

下修玩法

那么我们很容易就会相当,如果价格一直都很低,比方说转股价值都在80多,那我转股不久亏了吗,这个时候谁会傻到自己转股呢?
于是还有下修条款。下修条款是可以让你以更低的价格转换成股票你是不是就高兴啦。就更愿意转股啦。一般下修后转股价值都会上升。这时候一旦股票上涨,但是你可以选择以更低的价格买入,比方说现在股票是7元,但是你可以以6元的价格买入,(这里就体现了期权的属性),但是你也可以选择不换,到时候获得债券本金和利息,选择权在你。站在公司角度一定是希望你换成股票了,因为可以不用支付你现金。

双低玩法

可转债有两个重要参考一个是票面价值,一个是溢价率。票面价值很好理解,就是现价,溢价率是转换成股票后你的可转债价值,如果你遇到溢价率很小并且票面价值也很小甚至只有100元,我们可以称之为送钱童子。这种机会一年能遇到一次就很好啦。
这个双低策略可以直接在集思录,可转债板块,查看
如图:
在这里插入图片描述

最上面那些100元的是因为是新债,就是还没有发行,我们不用管(这个提一下,新债的打新操作也是很赚的一种。)
其实这个zhengbang转债昨天就是个很好的买点,昨天的价格就是100出头,今天就涨停了。当然目前的hongtao转债也是很不错的。
其他130以上我们就不考虑啦,有被强赎风险。

溢价玩法

在上面介绍中也可以发现当溢价率为负的时候,你买入换股是稳赚不赔的。没错,所以这种几乎一旦存在很快就会有人买入,所以机会也不是很多。

总结

最关注的还是风险,总的来说,可转债基本上是零风险的操作。前提一定是你在100元以下买入,而且越低越好。
那么我们模拟下你可以遭遇的情况:
1.这个债券很平稳,最后给你定期利息,你就相当于把钱放在银行了。但是这个是可以随取随用的。这种的概率5%左右。
2.这个债券被强赎了,那么你的利润很可能40%左右,这种概率95%左右。
3.这个债券违约了,公司退市了,这个时候你持有的可转债依然要偿还给你,即便公司破产了,可转债依然是优先获得赔偿,这个概率0%,因为目前可转债从上个世纪90代存在以来,无一违约。一个违约的都没有。而且在摊饼(买入很多)这种发生了损失也是有限的。

这个难点其实在于等待,绝大数时间在空仓等待,因为很多的机会都是一年一遇。遇到了就要抓住!
公众号:小李同学314
知乎:小李同学
CSDN:小李同学314
博客园:小李同学314
如果你对量化投资,数据分析,科学进展感兴趣,关注我,有机会大家一起分享!

### 使用最小二乘蒙特卡洛方法计算可转换债券价值 #### 方法概述 最小二乘蒙特卡洛(Least Squares Monte Carlo, LSMC)是一种用于评估具有提前回权或其他路径依赖特征金融工具的方法。对于可转换债券而言,该方法能够处理其复杂的嵌入期权特性。 LSMC的核心在于通过随机抽样生成标的资产价格路径,并利用回归分析估计继续持有或行使期权之间的差异。具体来说,在每个时间步上,算法会比较立即执行期权获得收益与预期未来现金流折现值,从而决定最优策略[^1]。 #### 实现步骤说明 为了简化描述而不失一般性,假设存在一个简单的离散模型: - 设定参数:初始股票价格 \( S_0 \),波动率 σ ,无风险利率 r ,股息收益率 q ,到期日 T 和转股价 K 。 - 构建网格结构的时间轴 t_i (i=0,...,N),其中 N 表示总期数。 - 对每条模拟路径 j (j=1,...,M),按照几何布朗运动方程迭代更新股票价格序列 {S_{ij}} :\[ dS_t = μS_tdT + σS_tdW_t \] 接下来应用最小二乘技术拟合多项式函数 f(t,S) 来近似内在价值 V(S,t)=max{K-S,0} 。当到达某个特定时刻 i* 时,如果预测得到的期望回报小于当前即刻行权所能获取的利益,则认为此时应该选择行权;反之则保持现状直到下一个决策点到来为止。 最后一步是对所有可能的状态取平均值得到最终估值结果 E[V(T)]/exp(-rT) ```python import numpy as np from scipy.stats import norm def lsmc_valuation(spot_price, strike_price, maturity, risk_free_rate, volatility, dividend_yield, num_steps, num_paths): dt = maturity / num_steps # Generate stock price paths using geometric Brownian motion. z = np.random.normal(size=(num_steps + 1, num_paths)) s = spot_price * np.exp(np.cumsum((risk_free_rate - dividend_yield - 0.5 * volatility ** 2) * dt + volatility * np.sqrt(dt) * z, axis=0)) # Initialize payoff array with terminal payoffs at expiration date. payoff = np.maximum(strike_price -1], 0) for step in range(num_steps - 1, -1, -1): # Fit polynomial regression model to approximate continuation value. cont_value = np.polyval(np.polyfit(s[step], payoff, deg=2), s[step]) # Determine whether early exercise is optimal based on comparison between intrinsic values and expected future cash flows discounted back to present time. payoff = np.where(cont_value > strike_price - s[step], payoff * np.exp(risk_free_rate * dt), strike_price - s[step]) return np.mean(payoff) * np.exp(-risk_free_rate * maturity) if __name__ == "__main__": result = lsmc_valuation(100., 98., 3./12, .05, .2, .02, 50, 1e4) print(f"The estimated convertible bond value via Least Square Monte Carlo method is ${result:.4f}") ``` 此代码片段实现了上述提到的过程并给出了具体的数值例子来进行验证测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值