单变量连续概率分布的介绍及Python运用

连续概率分布即连续型随机变量的概率分布,是概率论中的主要研究内容。下面介绍几种常见的单变量连续概率分布及Python运用

一、均匀分布

连续型均匀分布是指在支撑内各个点的概率密度均相等的分布

符号: U(a,b)

概率密度函数:f(x)=\frac{1}{b-a}

期望:EX=\int_{a}^{b}x/(b-a)dx=\frac{a+b}{2}

方差:Var(X)=EX^2-(EX)^2=\int_{a}^{b}x^2/(b-a)dx-(\frac{a+b}{2})^2=\frac{(b-a)^2}{12}

二、正态分布

正态分布是样本均值分布在样本量趋于无穷时的分布

符号: N(\mu ,\sigma ^2)

概率密度函数:f(x)=\frac{1}{\sqrt{2\pi }\sigma }exp[-\frac{(x-\mu)^2}{2\sigma^2}]

期望:EX=\int_{-\infty}^{\infty}\frac{x}{\sqrt{2\pi }\sigma }exp[-\frac{(x-\mu)^2}{2\sigma^2}]dx

=\int_{-\infty}^{\infty}\frac{x-\mu}{\sqrt{2\pi }\sigma }exp[-\frac{(x-\mu)^2}{2\sigma^2}]dx+\mu\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi }\sigma }exp[-\frac{(x-\mu)^2}{2\sigma^2}]dx=\mu

加号左边的被积函数关于 \mu 对称,因此为0。加号右边的被积函数即概率密度函数,积分为 1

方差:直接求正态分布的方差有些麻烦,下面先求标准正态分布 N(0, 1) 的方差

Var(X)=EX^2-(EX)^2=\frac{1}{\sqrt{2\pi }}\int_{-\infty}^{\infty}x^2exp(-\frac{x^2}{2})dx=-\frac{2}{\sqrt{2\pi }}\int_{0}^{\infty}xde^{-\frac{x^2}{2}},分部积分得

\frac{2}{\sqrt{2\pi }}\int_{0}^{\infty}e^{-\frac{x^2}{2}}dx=\frac{1}{\sqrt{2\pi }}\sqrt{\int_{0}^{\infty}\int_{0}^{\infty}exp(-\frac{x^2}{2}-\frac{y^2}{2})dxdy},作极坐标变换得

=\frac{1}{\sqrt{2\pi }}\sqrt{\int_{0}^{2\pi }\int_{0}^{\infty}exp(-\frac{r^2}{2})rdrd\theta }=1

对于正态分布 X\sim N(\mu ,\sigma ^2)Var(\frac{X-\mu}{\sigma })=1,因此Var(X)=\sigma ^2

性质:线性变换:设 u\sim N(0 ,1) 的标准正态分布,则 X=\mu +\sigma u\sim N(\mu, \sigma^2)

不相关可以推导出独立:X\sim N(\mu ,\sigma ^2)Y\sim N(\mu ,\sigma ^2),X 与 Y 不相关,则 X 与 Y 独立

三、伽玛分布

伽玛分布是一个神奇的分布,跟各种分布都有千丝万缕的联系,指数分布与卡方分布都是特殊的伽玛分布

符号: Ga(\alpha ,\lambda )

在介绍伽玛分布的概率密度函数前要先介绍伽玛函数:\Gamma (\alpha )=\int_{0}^{\infty}x^{\alpha -1}e^{-x}dx

对伽玛函数分部积分可得递推公式:\Gamma (\alpha +1)=\alpha \Gamma (\alpha ),又\Gamma (1)=1

所以当 \alpha 为整数时,\Gamma (\alpha +1)=\alpha !

概率密度函数:对伽玛函数等式两边进行变形得到:1=\int_{0}^{\infty}x^{\alpha -1}e^{-x}dx/\Gamma (\alpha )

设 x=\lambda t,有  1=\int_{0}^{\infty}\lambda ^{\alpha -1}t ^{\alpha -1}e^{-\lambda t}\lambda dt/\Gamma (\alpha )=\int_{0}^{\infty}\lambda ^{\alpha}t ^{\alpha -1}e^{-\lambda t} dt/\Gamma (\alpha ),被积函数即伽玛分布的概率密度函数

f(x)=\frac{\lambda ^{\alpha}}{\Gamma (\alpha )}x ^{\alpha -1}e^{-\lambda x}

期望:EX=\int_{0}^{\infty}\frac{\lambda ^{\alpha}}{\Gamma (\alpha )}x ^{\alpha }e^{-\lambda x}dx=\int_{0}^{\infty}\frac{\lambda ^{\alpha+1}}{\Gamma (\alpha +1)}x ^{\alpha }e^{-\lambda x}dx*\frac{\alpha }{\lambda }=\frac{\alpha }{\lambda }

方差:Var(X)=EX^2-(EX)^2=\int_{0}^{\infty}\frac{\lambda ^{\alpha}}{\Gamma (\alpha )}x ^{\alpha +2}e^{-\lambda x}dx-(\frac{\alpha }{\lambda })^2

\int_{0}^{\infty}\frac{\lambda ^{\alpha+2}}{\Gamma (\alpha +2)}x ^{\alpha +2}e^{-\lambda x}dx*\frac{\alpha (\alpha +1)}{\lambda ^2}-(\frac{\alpha }{\lambda })^2=\frac{\alpha }{\lambda ^2}

技巧是揍 Ga(\alpha+1 ,\lambda ) 与 Ga(\alpha+2 ,\lambda ) 的概率密度函数,再用伽玛函数的性质

性质:可加性:若 X\sim Ga(\alpha ,\lambda ),Y\sim Ga(\beta,\lambda ) 且 X 与 Y 独立,则 Z=X+Y \sim Ga(\alpha +\beta,\lambda )

四、指数分布

指数分布是支撑为非负数且满足无记忆性的分布。所谓无记忆性,指 P(X>a+b|X>b)=P(X>a)

指数分布 Exp(\lambda ) 即 Ga(1 ,\lambda )

符号: Exp(\lambda )

概率密度函数:由无记忆性条件得:P(X>a+b)=P(X>a)P(X>b),用积累分布函数表示为

[1-F(a+b)]=[1-F(a)][1-F(b)],对 a 求偏导得

-f(a+b)=-f(a)[1-F(b)],对 b 求偏导得

-f^{'}(a+b)=f(a)f(b),不妨取 b=0 有

-f^{'}(a)=f(a)f(0),记 f(0) 为 \lambda,解微分方程得

f(a)=Ce^{-\lambda a},C 为常数

又 f(a) 为概率密度函数,其在支撑上的积分为 1,解得 C=\lambda,因此指数分布的概率密度函数为

f(x)=\lambda e^{-\lambda x}

期望:EX=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx=-\int_{0}^{\infty}xd e^{-\lambda x}=\int_{0}^{\infty}e^{-\lambda x}dx=\frac{1}{\lambda}

方差:Var(X)=EX^2-(EX)^2=\int_{0}^{\infty}x^2\lambda e^{-\lambda x}dx-\frac{1}{\lambda^2}=\int_{0}^{\infty} 2xe^{-\lambda x}dx-\frac{1}{\lambda^2}

=\frac{1}{\lambda^2}

性质:无记忆性:P(X>a+b)=P(X>a)P(X>b)

五、卡方分布

卡方分布是 n 个独立同分布的标准正态分布平方和的分布

\chi ^2(n) 即 Ga(\frac{n}{2} ,\frac{1}{2} )

符号: \chi ^2(n)

概率密度函数:Ga(\frac{n}{2} ,\frac{1}{2} ) 代入即可

期望:EX=\frac{n/2}{1/2}=n

方差:Var(X)=\frac{n/2}{1/4}=2n

性质:可加性:若 X\sim \chi ^2(n),Y\sim \chi ^2(m) 且 X 与 Y 独立,则 Z=X+Y \sim \chi ^2(m+n)

 

以上各个分布的性质证明需要用到特征函数,以后再补

六、Python应用

from scipy.stats import uniform, norm, expon, gamma, chi2
 
###########生成随机数###########
uniform.rvs(loc=1, scale=10, size=100)  # 1 到 1 + 10 的均匀分布随机数 100 个
norm.rvs(loc=1, scale=0.3, size=100)  # 均值为 1,标准差为 0.3 的正态分布随机数 100 个
expon.rvs(scale=0.5, size=10)  # lambda 为 2 的指数分布随机数 10 个
gamma.rvs(a=0.4, scale=0.5,size=100)  # alpha = 0.4, lambda=2 的伽玛分布随机数 100 个
chi2.rvs(k=100, size=10)  # n=100 的卡方分布随机数 10 个
 
 
###########计算概率###########
uniform.pdf(x=2, loc=1, scale=10, size=100)  # 1 到 1 + 10 的均匀分布在 x=2 处的概率密度
norm.pdf(x=2, loc=1, scale=0.3, size=100)  # 均值为 1,标准差为 0.3 的正态分布在 x=2 处的概率密度
expon.pdf(x=2, scale=0.5 size=10)  # lambda 为 2 的指数分布在 x=2 处的概率密度
gamma.pdf(x=2, scale=0.5, a=0.4, size=100)  # alpha = 0.4, lambda=2 的伽玛分布在 x=2 处的概率密度
chi2.pdf(x=2, k=100, size=10)  # n=100 的卡方分布在 x=2 处的概率密度
 
###########累积分布函数###########
uniform.cdf(x=2, loc=1, scale=10, size=100)  # 1 到 1 + 10 的均匀分布小于等于 2 的概率
norm.cdf(x=2, loc=1, scale=0.3, size=100)  # 均值为 1,标准差为 0.3 的正态分布小于等于 2 的概率
expon.cdf(x=2, scale=0.5, size=10)  # lambda 为 2 的指数分布小于等于 2 的概率
gamma.cdf(x=2, scale=0.5, a=0.4, size=100)  # alpha = 0.4, lambda=2 的伽玛分布小于等于 2 的概率
chi2.cdf(x=2, k=100, size=10)  # n=100 的卡方分布小于等于 2 的概率

注意到,在 Python 中伽玛分布与指数分布的参数 \lambda 是通过指定 \lambda 的倒数 scale 实现的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值