马尔可夫不等式、切比雪夫不等式、柯西-施瓦茨不等式

一、马尔可夫不等式(Markov)

马尔可夫不等式描述的是非负随机变量绝对位置的概率上限

对于非负随机变量X,a >= 0,有  P(X\geq a)\leq \frac{EX}{a}

证明:原式可化为

 \int_{a}^{\infty}f(x)dx\leq \int_{0}^{\infty}\frac{x}{a}f(x)dx

注意到,因为 X 非负,右边 \int_{0}^{\infty}\frac{x}{a}f(x)dx\geq \int_{a}^{\infty}\frac{x}{a}f(x)dx\geq \int_{a}^{\infty}f(x)dx=P(X\geq a)

二、切比雪夫不等式(Chebyshev)

切比雪夫不等式描述的是随机变量距期望相对位置偏离的概率上限

P(|X-EX|\geq \varepsilon )\leq \frac{Var(X)}{\varepsilon^2}

证明:记 \Phi =\{|x-EX|\geq \varepsilon \}

\int_{\Phi}^{ }f(x)dx\leq \frac{E(X-EX)^2}{\varepsilon^2}

右边 \frac{E(X-EX)^2}{\varepsilon^2}=\int_{-\infty}^{\infty}(x-EX)^2f(x)dx/\varepsilon^2\geq \int_{​{\Phi}^{ }}(x-EX)^2f(x)dx/\varepsilon^2

注意到,在 \Phi 中,(x-EX)^2\geq \varepsilon ^2,因此有

\int_{​{\Phi}^{ }}(x-EX)^2f(x)dx/\varepsilon^2\geq \int_{​{\Phi}^{ }}f(x)dx

三、柯西-施瓦茨不等式(Cauchy-Schwarz)

柯西-施瓦茨不等式描述的是协方差与方差之间的不等关系

Cov(X,Y)^2\leq \sigma _{X}^2\sigma _{Y}^2

证明:上式可化为 E^2(X-EX)(Y-EY)\leq E(X-EX)^2E(Y-EY)^2

可以看到组成部分只有 2 个:X-EX 与 Y-EY

因此构造函数 f(t)=E[t(X-EX)+(Y-EY)]^2

=E[(X-EX)^2t^2+2(X-EX)(Y-EY)t+(Y-EY)^2]

显然有 f(t)\leq 0,所以上述二次函数 \Delta =4E^2(X-EX)(Y-EY)-4E(X-EX)^2E(Y-EY)^2\leq 0

即柯西-施瓦茨不等式

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值