测度论与概率论基础(程士宏)学习笔记(三)

教材电子版:《测度论与概率论基础-程士宏.pdf》
推荐网络课程:B站up主 antiRomance

第一章 可测空间和可测映射

§ \text{\S} § 3   σ \text{ }\sigma  σ 域的生成

生成的概念

定义 1.3.1   \bm{1.3.1}\text{ } 1.3.1  如果 S ′ \mathscr{S'} S 代表任意的环(或单调系、 λ \lambda λ 系、 σ \sigma σ 域),同时集合系 S \mathscr{S} S 与集合系 E \mathscr{E} E 满足 S ⊃ E ; ∀ S ′ , S ′ ⊃ E ⇒ S ′ ⊃ S ; \begin{aligned} & \mathscr{S} \supset \mathscr{E};\\ & \forall \mathscr{S'},\mathscr{S'} \supset \mathscr{E} \Rightarrow \mathscr{S'} \supset \mathscr{S}; \end{aligned} SE;SSESS;则称 S \mathscr{S} S 为由集合系 E \mathscr{E} E 生成 的环(或单调系、 λ \lambda λ 系、 σ \sigma σ 域)

简单来说,生成的定义确保了,由任意集合系 E \mathscr{E} E 生成的环(或单调系、 λ \lambda λ 系、 σ \sigma σ 域)就是包含了集合系 E \mathscr{E} E 的最小的环(或单调系、 λ \lambda λ 系、 σ \sigma σ 域)

命题 1.3.1   \bm{1.3.1}\text{ } 1.3.1  求证:由任意集合系生成的环、单调系、 λ \lambda λ 系、 σ \sigma σ 域均存在

:以环为例,其他三种情况的证明同理,只需要简单的代换即可,记 T \mathscr{T} T 为空间 X X X 中全体集合组成的集合系,根据定义可知 T \mathscr{T} T 是一个 σ \sigma σ 域,因此 T \mathscr{T} T 同时还是一个环,并且有 T ⊃ E \mathscr{T} \supset \mathscr{E} TE
记包含集合系 E \mathscr{E} E 的全体环的集合为 A \bm{A} A(注意,这是集合系的集合,因而不用花体字母表示),那么一定有 T ∈ A \mathscr{T} \in \bm{A} TA,现构造集合系 S = d e f ⋂ ∀ A ∈ A A \mathscr{S} \xlongequal{def} \bigcap \limits_{\forall \mathscr{A} \in \bm{A}}\mathscr{A} Sdef AAA,那么不难验证集合系 S \mathscr{S} S 满足两条定义,故而 S \mathscr{S} S 是由 E \mathscr{E} E 生成的环

我们将由集合系 E \mathscr{E} E 生成的环、单调系、 λ \lambda λ 系和 σ \sigma σ 域分别记为 r ( E ) , m ( E ) , l ( E ) r(\mathscr{E}), m(\mathscr{E}), l(\mathscr{E}) r(E),m(E),l(E) σ ( E ) \sigma(\mathscr{E}) σ(E)

定理 1.3.2   \bm{1.3.2}\text{ } 1.3.2  求证:如果 Q \mathscr{Q} Q 是半环,那么 r ( Q ) = ⋃ n = 1 ∞ { ⋃ k = 1 n A k : A k ∈ Q , ∀ k i ≠ k j ⇒ A k i ∩ A k j = ∅ } r(\mathscr{Q})=\bigcup \limits_{n=1}^{\infin}\Big\{ \bigcup \limits_{k=1}^{n}A_k: A_k \in \mathscr{Q},\forall k_i \not= k_j \Rightarrow A_{k_i} \cap A_{k_j} = \varnothing \Big\} r(Q)=n=1{k=1nAk:AkQ,ki=kjAkiAkj=}

:我们用 r h s rhs rhs 来指代等式的右半部分,要证明两个集合相等,等同于要证明这两个集合互相包含,由于环对有限并的运算是封闭的,因此 ∀ x ∈ r h s , x = ⋃ k = 1 n A k ∈ r ( Q ) \forall x \in rhs,x=\bigcup \limits_{k=1}^{n}A_k \in r(\mathscr{Q}) xrhs,x=k=1nAkr(Q),也即 r ( Q ) ⊃ r h s r(\mathscr{Q}) \supset rhs r(Q)rhs

欲证 r ( Q ) = r h s r(\mathscr{Q})=rhs r(Q)=rhs,只需证 r ( Q ) ⊂ r h s r(\mathscr{Q}) \subset rhs r(Q)rhs,只需证明 r h s rhs rhs 是一个环,现取 ∀ A , B ∈ r h s \forall A, B \in rhs A,Brhs,根据 r h s rhs rhs 的定义可知 ∀ A , B ∈ r h s , ∃ A i ∈ Q , i = 1 , ⋯   , n ∃ B j ∈ Q , j = 1 , ⋯   , m s.t.  ∀ s ≠ t ⇒ A s ∩ A t = ∅ , B s ∩ B t = ∅ \begin{aligned} & \begin{aligned} & \forall A, B \in rhs,\\ & \exist A_i \in \mathscr{Q}, &i=1,\dotsm,n\\ & \exist B_j \in \mathscr{Q}, &j=1,\dotsm,m\\ \end{aligned}\\ & \text{s.t. } \forall s \not= t \Rightarrow A_s \cap A_t = \varnothing,B_s \cap B_t=\varnothing \end{aligned} A,Brhs,AiQ,BjQ,i=1,,nj=1,,ms.t. s=tAsAt=,BsBt=使得 A = ⋃ i = 1 n A i , B = ⋃ j = 1 m B j A=\bigcup\limits_{i=1}^{n}A_i,B=\bigcup\limits_{j=1}^{m}B_j A=i=1nAi,B=j=1mBj注意到 A i , B j A_i, B_j Ai,Bj 均为半环 Q \mathscr{Q} Q 上的元素,因而 A i ∖ ( A i ∩ B j ) A_i \setminus (A_i \cap B_j) Ai(AiBj) 是也是半环 Q \mathscr{Q} Q 上的元素,根据半环的定义,我们可以得知 ∀ ( i , j ) , i = 1 , ⋯   , n , j = 1 , ⋯   , m ∃ C l ( i , j ) ∈ Q , l = 1 , ⋯   , k ( i , j ) s.t.  ∀ s ≠ t ⇒ C s ( i , j ) ∩ C t ( i , j ) = ∅ \begin{aligned} & \forall (i, j), i=1,\dotsm,n, j=1,\dotsm,m\\ & \exist C_l^{(i,j)} \in \mathscr{Q},l=1,\dotsm,k_{(i,j)}\\ & \text{s.t. } \forall s \not= t \Rightarrow C_s^{(i,j)} \cap C_t^{(i,j)} = \varnothing \end{aligned} (i,j),i=1,,n,j=1,,mCl(i,j)Q,l=1,,k(i,j)s.t. s=tCs(i,j)Ct(i,j)=使得 A i ∖ ( A i ∩ B j ) = ⋃ l = 1 k ( i , j ) C l ( i , j ) A_i \setminus (A_i \cap B_j)=\bigcup \limits_{l=1}^{k_{(i,j)}}C_l^{(i,j)} Ai(AiBj)=l=1k(i,j)Cl(i,j)并且显然有
C l ( i , j ) ⊂ A i C_l^{(i,j)} \subset A_i Cl(i,j)Ai据此我们就有
A ∖ B = A ∩ B c = ⋃ i = 1 n A i ∩ { ⋃ j = 1 m B j } c = ⋃ i = 1 n A i ∩ { ⋂ j = 1 m B j c } = ⋃ i = 1 n ⋂ j = 1 m ( A i ∩ B j ) = ⋃ i = 1 n ⋂ j = 1 m [ A i ∖ ( A i ∩ B j ) ] = ⋃ i = 1 n ⋂ j = 1 m ⋃ l = 1 k ( i , j ) C l ( i , j ) = ⋃ i = 1 n ( { ⋃ l = 1 k ( i , 1 ) C l ( i , 1 ) } ⋂ ⋯ ⋂ { ⋃ l = 1 k ( i , m ) C l ( i , m ) } ) = ⋃ i = 1 n ⋃ l 1 = 1 k ( i , 1 ) ⋯ ⋃ l m = 1 k ( i , m ) { ⋂ j = 1 m C l j ( i , j ) } = ⋃ i = 1 n ⋃ l 1 = 1 , ⋯   , k ( i , 1 ) ⋯ l m = 1 , ⋯   , k ( i , m ) ⋂ j = 1 m C l j ( i , j ) \begin{aligned} A \setminus B &= A \cap B^c = \bigcup \limits_{i=1}^n {A_i} \cap {\Big\{ \bigcup \limits_{j=1}^m B_j \Big\}}^c = \bigcup \limits_{i=1}^n {A_i} \cap \Big\{ \bigcap \limits_{j=1}^m {B_j}^c \Big\} \\ & = \bigcup \limits_{i=1}^{n} \bigcap \limits_{j=1}^{m} (A_i \cap B_j) = \bigcup \limits_{i=1}^{n} \bigcap \limits_{j=1}^{m} [A_i \setminus (A_i \cap B_j)] \\ & = \bigcup \limits_{i=1}^{n} \bigcap \limits_{j=1}^{m} \bigcup \limits_{l=1}^{k_{(i,j)}}C_l^{(i,j)} = \bigcup \limits_{i=1}^{n} \Bigg( \Big\{ \bigcup \limits_{l=1}^{k_{(i,1)}}C_l^{(i,1)} \Big\} \bigcap \dotsm \bigcap \Big\{ \bigcup \limits_{l=1}^{k_{(i,m)}}C_l^{(i,m)} \Big\} \Bigg) \\ & = \bigcup \limits_{i=1}^{n} \bigcup \limits_{l_1=1}^{k_{(i,1)}} \dotsm \bigcup \limits_{l_m=1}^{k_{(i,m)}} \Big\{ \bigcap \limits_{j=1}^{m}C_{l_j}^{(i,j)} \Big\} \\ & = \bigcup \limits_{i=1}^{n} \bigcup \limits_{ { {l_1=1,\dotsm,k_{(i,1)}} \atop {\dotsm}} \atop {l_m=1,\dotsm,k_{(i,m)}} } \bigcap \limits_{j=1}^{m} C_{l_j}^{(i,j)} \end{aligned} AB=ABc=i=1nAi{j=1mBj}c=i=1nAi{j=1mBjc}=i=1nj=1m(AiBj)=i=1nj=1m[Ai(AiBj)]=i=1nj=1ml=1k(i,j)Cl(i,j)=i=1n({l=1k(i,1)Cl(i,1)}{l=1k(i,m)Cl(i,m)})=i=1nl1=1k(i,1)lm=1k(i,m){j=1mClj(i,j)}=i=1nlm=1,,k(i,m)l1=1,,k(i,1)j=1mClj(i,j)因为 ∀ j = 1 , ⋯   , m \forall j=1,\dotsm, m j=1,,m,我们有 C l j ( i , j ) ⊂ A i C_{l_j}^{(i,j)} \subset A_i Clj(i,j)Ai,故它们的交 ⋂ j = 1 m C l j ( i , j ) ⊂ A i \bigcap \limits_{j=1}^{m} C_{l_j}^{(i,j)} \subset A_i j=1mClj(i,j)Ai,从而这些集合的有限并 ⋃ l 1 = 1 , ⋯   , k ( i , 1 ) ⋯ l m = 1 , ⋯   , k ( i , m ) ⋂ j = 1 m C l j ( i , j ) ⊂ A i \bigcup \limits_{ { {l_1=1,\dotsm,k_{(i,1)}} \atop {\dotsm}} \atop {l_m=1,\dotsm,k_{(i,m)}} } \bigcap \limits_{j=1}^{m} C_{l_j}^{(i,j)} \subset A_i lm=1,,k(i,m)l1=1,,k(i,1)j=1mClj(i,j)Ai,而我们知道 ∀ s ≠ t ⇒ A s ∩ A t = ∅ \forall s \not= t \Rightarrow A_s \cap A_t = \varnothing s=tAsAt=,所以 ⋃ l 1 = 1 , ⋯   , k ( i , 1 ) ⋯ l m = 1 , ⋯   , k ( i , m ) ⋂ j = 1 m C l j ( i , j ) \bigcup \limits_{ { {l_1=1,\dotsm,k_{(i,1)}} \atop {\dotsm}} \atop {l_m=1,\dotsm,k_{(i,m)}} } \bigcap \limits_{j=1}^{m} C_{l_j}^{(i,j)} lm=1,,k(i,m)l1=1,,k(i,1)j=1mClj(i,j) 两两不交,这说明 A ∖ B A \setminus B AB 的结果可以分解为空间 Q \mathscr{Q} Q 上有限个两两不交的集合的并,故 r h s rhs rhs 对差运算是封闭的

之后,我们可以发现 A ∪ B = B ∪ ( A ∖ B ) = ( ⋃ j = 1 m B j ) ∪ ( ⋃ i = 1 n ⋃ l 1 = 1 , ⋯   , k ( i , 1 ) ⋯ l m = 1 , ⋯   , k ( i , m ) ⋂ j = 1 m C l j ( i , j ) ) A \cup B = B \cup (A \setminus B) = \Big( \bigcup \limits_{j=1}^{m} B_j \Big) \cup \Big( \bigcup \limits_{i=1}^{n} \bigcup \limits_{{ {l_1=1,\dotsm,k_{(i,1)}} \atop {\dotsm}} \atop {l_m=1,\dotsm,k_{(i,m)}}} \bigcap \limits_{j=1}^{m} C_{l_j}^{(i,j)}\Big) AB=B(AB)=(j=1mBj)(i=1nlm=1,,k(i,m)l1=1,,k(i,1)j=1mClj(i,j))其中 B j ⊂ B , C l j ( i , j ) ⊂ A ∖ B B_j \subset B,C_{l_j}^{(i,j)}\subset A \setminus B BjB,Clj(i,j)AB,又因为 ( A ∖ B ) ∩ B = ∅ (A \setminus B) \cap B = \varnothing (AB)B=,因此 A ∪ B A \cup B AB 中的元素可以分解为空间 Q \mathscr{Q} Q 上有限个两两不交的集合的并,故而 r h s rhs rhs 对有限并的运算是封闭的,所以 r h s rhs rhs 确实是一个环,命题得证

单调类定理

定理 1.3.3   \bm{1.3.3}\text{ } 1.3.3  求证:如果 A \mathscr{A} A 是一个域,那么 σ ( A ) = m ( A ) \sigma(\mathscr{A})=m(\mathscr{A}) σ(A)=m(A)

:根据定义我们有 σ ( A ) \sigma(\mathscr{A}) σ(A) 是包含域 A \mathscr{A} A σ \sigma σ 域,因为 σ \sigma σ 域必定是单调系,所以 σ ( A ) \sigma(\mathscr{A}) σ(A) 是一个包含域 A \mathscr{A} A 的单调系,因而有 σ ( A ) ⊃ m ( A ) \sigma(\mathscr{A}) \supset m(\mathscr{A}) σ(A)m(A),因此要证 σ ( A ) = m ( A ) \sigma(\mathscr{A})=m(\mathscr{A}) σ(A)=m(A),只要证 σ ( A ) ⊂ m ( A ) \sigma(\mathscr{A}) \subset m(\mathscr{A}) σ(A)m(A),也即需证明 m ( A ) m(\mathscr{A}) m(A) 是一个 σ \sigma σ 域,又因为 m ( A ) m(\mathscr{A}) m(A) 是单调系,那么只需证 m ( A ) m(\mathscr{A}) m(A) 是一个域

我们首先证明 m ( A ) m(\mathscr{A}) m(A) 是一个环,首先,用域 A \mathscr{A} A 上的任意元素 A A A 可以构造出一个集合系 G A = d e f { B : B , A ∪ B , A ∖ B ∈ m ( A ) } \mathscr{G}_A\xlongequal{def}\{B:B,A \cup B,A\setminus B\in m(\mathscr{A})\} GAdef {B:B,AB,ABm(A)} 且显然有 m ( A ) ⊂ G A m(\mathscr{A}) \subset \mathscr{G}_A m(A)GA,取集合系上任意一个序列 { G n , n = 1 , 2 , ⋯   } \{G_n,n=1,2,\dotsm\} {Gn,n=1,2,},我们可以构造出一个序列 { ⋃ k = 1 n G k , n = 1 , 2 , ⋯   } ↑ \{\bigcup \limits_{k=1}^{n} G_k,n=1,2,\dotsm\} \uparrow {k=1nGk,n=1,2,}
由于集合系 G A \mathscr{G}_A GA 对有限交运算是封闭的,因而序列 { ⋃ k = 1 n G k , n = 1 , 2 , ⋯   } \{\bigcup \limits_{k=1}^{n} G_k,n=1,2,\dotsm\} {k=1nGk,n=1,2,} 中的每一个元素 ⋃ k = 1 n G k ∈ m ( A ) \bigcup \limits_{k=1}^{n} G_k \in m(\mathscr{A}) k=1nGkm(A),故单调非降序列 { ⋃ k = 1 n G k , n = 1 , 2 , ⋯   } \{\bigcup \limits_{k=1}^{n} G_k,n=1,2,\dotsm\} {k=1nGk,n=1,2,} m ( A ) m(\mathscr{A}) m(A) 上,其对极限运算封闭,有 lim ⁡ n → ∞ ⋃ k = 1 n G k ∈ m ( A ) ⊂ G A \lim \limits_{n\rarr \infin} \bigcup \limits_{k=1}^{n} G_k \in m(\mathscr{A}) \subset \mathscr{G}_A nlimk=1nGkm(A)GA

注意到 X ∈ A ⊂ m ( A ) X \in \mathscr{A} \subset m(\mathscr{A}) XAm(A),可以得知, ∀ A ∈ A , B ∈ m ( A ) \forall A\in \mathscr{A}, B\in m(\mathscr{A}) AA,Bm(A),我们有 A ∩ B = X ∖ [ ( X ∖ A ) ∪ ( X ∖ B ) ] ∈ G A A \cap B = X \setminus [(X \setminus A) \cup (X \setminus B)] \in \mathscr{G}_A AB=X[(XA)(XB)]GA,因而对任意非降序列 { ⋃ k = 1 n G k , n = 1 , 2 , ⋯   } \{\bigcup \limits_{k=1}^{n} G_k,n=1,2,\dotsm\} {k=1nGk,n=1,2,},有 { X ∖ [ ⋃ k = 1 n ( X ∖ G k ) ] = ⋂ k = 1 n G k ∈ m ( A ) , n = 1 , 2 , ⋯   } ↓ \{X\setminus [\bigcup \limits_{k=1}^{n} (X\setminus G_k)]=\bigcap \limits_{k=1}^{n} G_k\in m(\mathscr{A}),n=1,2,\dotsm\} \downarrow {X[k=1n(XGk)]=k=1nGkm(A),n=1,2,},因而极限 lim ⁡ n → ∞ ⋂ k = 1 n G k ∈ m ( A ) ⊂ G A \lim \limits_{n\rarr \infin} \bigcap \limits_{k=1}^{n} G_k \in m(\mathscr{A}) \subset \mathscr{G}_A nlimk=1nGkm(A)GA,至此我们可以得知, G A \mathscr{G}_A GA 对极限运算封闭,是一个单调系
现取 m ( A ) m(\mathscr{A}) m(A) 上的任意元素 B B B,构造集合系 H B = d e f { A : A , A ∪ B , A ∖ B ∈ m ( A ) } \mathscr{H}_B\xlongequal{def}\{A:A,A \cup B,A\setminus B\in m(\mathscr{A})\} HBdef {A:A,AB,ABm(A)},同理,对集合系 H B \mathscr{H}_B HB 上的任意序列 { H n , n = 1 , 2 , ⋯   } \{H_n,n=1,2,\dotsm \} {Hn,n=1,2,} 可构造出 { ⋃ k = 1 n H k , n = 1 , 2 , ⋯   } ↑ \{\bigcup \limits_{k=1}^{n} H_k,n=1,2,\dotsm\} \uparrow {k=1nHk,n=1,2,} 对极限运算封闭;然后根据 H B \mathscr{H}_B HB 对并和差的封闭性得出 { X ∖ [ ⋃ k = 1 n ( X ∖ H k ) ] = ⋂ k = 1 n H k ∈ m ( A ) , n = 1 , 2 , ⋯   } ↓ \{X\setminus [\bigcup \limits_{k=1}^{n} (X\setminus H_k)]=\bigcap \limits_{k=1}^{n} H_k\in m(\mathscr{A}),n=1,2,\dotsm\} \downarrow {X[k=1n(XHk)]=k=1nHkm(A),n=1,2,} 对极限运算也封闭,因而 H B \mathscr{H}_B HB 对极限运算封闭,是一个单调系

根据以上论证,我们可以得出 H B ⊃ G A ⊃ m ( A ) \mathscr{H}_B \supset \mathscr{G}_A \supset m(\mathscr{A}) HBGAm(A),这意味着 ∀ A , B ∈ m ( A ) → A ∪ B , A ∖ B ∈ m ( A ) \forall A,B \in m(\mathscr{A}) \rarr A \cup B, A \setminus B \in m(\mathscr{A}) A,Bm(A)AB,ABm(A)因此 m ( A ) m(\mathscr{A}) m(A) 是一个环,之后由于 A \mathscr{A} A 是一个域,有 X ∈ A ⊂ m ( A ) X \in \mathscr{A} \subset m(\mathscr{A}) XAm(A),据此可知 ∀ A , B ∈ m ( A ) → A c = X ∖ A ∈ m ( A ) , A ∩ B = X ∖ [ ( X ∖ A ) ∪ ( X ∖ B ) ] ∈ m ( A ) \forall A,B \in m(\mathscr{A}) \rarr A^c=X \setminus A \in m(\mathscr{A}), A \cap B =X\setminus [(X\setminus A)\cup (X\setminus B)] \in m(\mathscr{A}) A,Bm(A)Ac=XAm(A),AB=X[(XA)(XB)]m(A),即 m ( A ) m(\mathscr{A}) m(A) 是一个域,满足 m ( A ) ⊃ σ ( A ) m(\mathscr{A}) \supset \sigma(\mathscr{A}) m(A)σ(A),命题成立

在实际应用的时候,我们可以把这一命题写作下方的等价形式:

推论 1.3.4   \bm{1.3.4}\text{ } 1.3.4  如果 A \mathscr{A} A 是一个域, M \mathscr{M} M 是一个单调系,那么 A ⊂ M ⇒ σ ( A ) ⊂ M \mathscr{A} \subset \mathscr{M} \Rarr \sigma(\mathscr{A}) \subset \mathscr{M} AMσ(A)M

定理 1.3.5   \bm{1.3.5}\text{ } 1.3.5  求证:如果 P \mathscr{P} P 是一个 π \pi π 系,那么 σ ( P ) = l ( P ) \sigma(\mathscr{P})=l(\mathscr{P}) σ(P)=l(P)

:同理,由于 σ \sigma σ 域必定是 λ \lambda λ 系,因此 σ ( P ) ⊃ l ( P ) \sigma(\mathscr{P}) \supset l(\mathscr{P}) σ(P)l(P),为证 σ ( P ) ⊂ l ( P ) \sigma(\mathscr{P}) \subset l(\mathscr{P}) σ(P)l(P),因为 l ( P ) l(\mathscr{P}) l(P) 是一个 λ \lambda λ 系,所以只需证明 l ( P ) l(\mathscr{P}) l(P) 是一个 π \pi π

首先,我们可以根据 π \pi π P \mathscr{P} P 上的任意元素 A A A 构造出一个集合系 G A = d e f { B : B , A ∩ B ∈ l ( P ) } \mathscr{G}_A \xlongequal{def} \{B:B,A\cap B \in l(\mathscr{P})\} GAdef {B:B,ABl(P)},由于 G A ⊃ l ( P ) \mathscr{G}_A \supset l(\mathscr{P}) GAl(P),我们可以得到 X ∈ G A X \in \mathscr{G}_A XGA,那么对于 P \mathscr{P} P 上任意的元素 A A A,我们都能根据 G A \mathscr{G}_A GA 的定义得知,在 G A \mathscr{G}_A GA 中存在 A ∩ A c = X ∈ l ( P ) A \cap A^c =X \in l(\mathscr{P}) AAc=Xl(P),因而 G A \mathscr{G}_A GA 对补封闭,那么有 ∀ C , D ∈ G A ∧ C ⊃ D ⇒ C ∖ D = C ∩ D c ∈ l ( P ) \forall C, D \in \mathscr{G}_A \land C \supset D \Rarr C \setminus D=C \cap D^c \in l(\mathscr{P}) C,DGACDCD=CDcl(P),因而 G A \mathscr{G}_A GA 对真差封闭
G A \mathscr{G}_A GA 上任意一个序列 { G n , n = 1 , 2 , ⋯   } \{G_n,n=1,2,\dotsm\} {Gn,n=1,2,},我们有 { ⋃ k = 1 n G k , n = 1 , 2 , ⋯   } ↑ \{\bigcup \limits_{k=1}^{n} G_k,n=1,2,\dotsm\} \uparrow {k=1nGk,n=1,2,},又因为 G A \mathscr{G}_A GA 对有限交与真差封闭,因而 ∀ C , D ∈ G A ⇒ C ∪ D = ( C c ∩ D c ) c ∈ G A \forall C, D \in \mathscr{G}_A \Rarr C\cup D = (C^c\cap D^c)^c \in \mathscr{G}_A C,DGACD=(CcDc)cGA,所以 G A \mathscr{G}_A GA 对有限并封闭,故 ⋃ k = 1 n G k ∈ G A \bigcup \limits_{k=1}^{n} G_k\in \mathscr{G}_A k=1nGkGA,所以 lim ⁡ n → ∞ ⋃ k = 1 n G k ∈ l ( P ) ⊂ G A \lim\limits_{n \rarr \infin} \bigcup \limits_{k=1}^{n} G_k \in l(\mathscr{P}) \subset \mathscr{G}_A nlimk=1nGkl(P)GA,因而 G A \mathscr{G}_A GA 对于其上的任意非降序列的极限运算封闭,所以 G A \mathscr{G}_A GA 满足 λ \lambda λ 系的三条定义,故 G A \mathscr{G}_A GA λ \lambda λ

同理,根据 l ( P ) l(\mathscr{P}) l(P) 上的任意元素 B B B 构造出一个集合系 H B = d e f { A : A , A ∩ B ∈ l ( P ) } \mathscr{H}_B\xlongequal{def}\{A:A,A \cap B \in l(\mathscr{P})\} HBdef {A:A,ABl(P)},可以得出 H B \mathscr{H}_B HB 也是一个 λ \lambda λ 系,据此我们可以得出, H B ⊃ G A ⊃ l ( P ) \mathscr{H}_B \supset \mathscr{G}_A \supset l(\mathscr{P}) HBGAl(P),故我们有 ∀ A , B ∈ l ( P ) ⇒ A ∩ B ∈ l ( P ) \forall A,B \in l(\mathscr{P}) \Rarr A \cap B \in l(\mathscr{P}) A,Bl(P)ABl(P)因而 l ( P ) l(\mathscr{P}) l(P) 是一个 π \pi π 系,那么因为 l ( P ) l(\mathscr{P}) l(P) 显然是一个 λ \lambda λ 系,所以 l ( P ) l(\mathscr{P}) l(P) 是一个 σ \sigma σ 域,满足 l ( P ) ⊃ σ ( P ) l(\mathscr{P}) \supset \sigma(\mathscr{P}) l(P)σ(P),命题成立

在实际应用的时候,我们可以把这一命题写作下方的等价形式:

推论 1.3.4   \bm{1.3.4}\text{ } 1.3.4  如果 P \mathscr{P} P 是一个 π \pi π 系, L \mathscr{L} L 是一个 λ \lambda λ 系,那么 P ⊂ L ⇒ σ ( P ) ⊂ L \mathscr{P} \subset \mathscr{L} \Rarr \sigma(\mathscr{P}) \subset \mathscr{L} PLσ(P)L

Borel 集合系

由简单集合系生成 σ \sigma σ 域的一个重要例子是 B R = d e f σ ( Q R ) = σ ( P R ) \mathscr{B}_{\bm{R}} \xlongequal{def}\sigma(\mathscr{Q}_{\bm{R}})=\sigma(\mathscr{P}_{\bm{R}}) BRdef σ(QR)=σ(PR)其中 B R \mathscr{B}_{\bm{R}} BR 被称为实数空间 R \bm{R} R 上的 博雷尔集合系(Borel 集合系),其中的集合被称为 R \bm{R} R 中的 博雷尔集,以 O R \mathscr{O}_{\bm{R}} OR 记由 R \bm{R} R 中开集组成的集合系,求证: B R = σ ( O R ) \mathscr{B}_{\bm{R}} = \sigma(\mathscr{O}_{\bm{R}}) BR=σ(OR)

:首先证明 B R ⊂ σ ( O R ) \mathscr{B}_{\bm{R}} \subset \sigma(\mathscr{O}_{\bm{R}}) BRσ(OR),因为 B R = σ ( P R ) \mathscr{B}_{\bm{R}} = \sigma(\mathscr{P}_{\bm{R}}) BR=σ(PR),而 P R \mathscr{P}_{\bm{R}} PR R \bm{R} R 上的 π \pi π 系,因而显然有 P R ⊂ σ ( O R ) \mathscr{P}_{\bm{R}} \subset \sigma(\mathscr{O}_{\bm{R}}) PRσ(OR),而因为 σ ( O R ) \sigma(\mathscr{O}_{\bm{R}}) σ(OR) 是一个 σ \sigma σ 域,因而它必是 λ \lambda λ 系,所以我们有 σ ( P R ) ⊂ σ ( O R ) \sigma(\mathscr{P}_{\bm{R}}) \subset \sigma(\mathscr{O}_{\bm{R}}) σ(PR)σ(OR),即 B R ⊂ σ ( O R ) \mathscr{B}_{\bm{R}} \subset \sigma(\mathscr{O}_{\bm{R}}) BRσ(OR)
反之,对任意 O R \mathscr{O}_{\bm{R}} OR 中的非空元素 A = ( a , b ) , B = ( c , d ) A=(a,b),B=(c,d) A=(a,b),B=(c,d) A ∩ B = { ( c , b ) , a < c ∧ c ≤ b ≤ d ; ( a , b ) , c ≤ a ≤ d ∧ c ≤ b ≤ d ; ( a , d ) , c ≤ a ≤ d ∧ b > d ; ( c , d ) , a < c ∧ b > d ; ∅ , e l s e ; ∈ O R A \cap B = \begin{cases} (c,b), & a \lt c \land c \le b \le d;\\ (a,b), & c \le a \le d \land c \le b \le d;\\ (a,d), & c \le a \le d \land b \gt d;\\ (c,d), & a \lt c \land b \gt d;\\ \varnothing, &else; \end{cases} \in \mathscr{O}_{\bm{R}} AB= (c,b),(a,b),(a,d),(c,d),,a<ccbd;cadcbd;cadb>d;a<cb>d;else;OR因而 O R \mathscr{O}_{\bm{R}} OR 是实数空间 R \bm{R} R 上的 π \pi π 系,那么有 O R ⊂ σ ( P R ) \mathscr{O}_{\bm{R}} \subset \sigma(\mathscr{P}_{\bm{R}}) ORσ(PR),而又因为 σ ( P R ) \sigma(\mathscr{P}_{\bm{R}}) σ(PR) 必定是一个 λ \lambda λ 系,因而 σ ( O R ) ⊂ σ ( P R ) \sigma(\mathscr{O}_{\bm{R}}) \subset \sigma(\mathscr{P}_{\bm{R}}) σ(OR)σ(PR),故我们有 B R ⊂ σ ( O R ) \mathscr{B}_{\bm{R}} \subset \sigma(\mathscr{O}_{\bm{R}}) BRσ(OR) σ ( O R ) ⊂ B R \sigma(\mathscr{O}_{\bm{R}}) \subset \mathscr{B}_{\bm{R}} σ(OR)BR,因而 B R = σ ( O R ) \mathscr{B}_{\bm{R}} =\sigma(\mathscr{O}_{\bm{R}}) BR=σ(OR)

由此出发,我们可以把博雷尔集的概念一般化:对于拓扑空间 X X X,记 O \mathscr{O} O 为其上的开集系,那么可以把 B = d e f σ ( O ) \mathscr{B} \xlongequal{def} \sigma(\mathscr{O}) Bdef σ(O)称为拓扑空间 X X X 上的博雷尔集合系,其中的集合称为拓扑空间 X X X 上的博雷尔集,并将 ( X , B ) (X,\mathscr{B}) (X,B) 称为 拓扑可测空间

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值