测度论与概率论基础(程士宏)学习笔记(一)

本文介绍了集合论的基本概念,包括集合、元素、示性函数和补集。讨论了集合的并、交、差和对称差等二元运算,以及这些运算的性质。此外,还阐述了集合的单调序列、极限、下极限和上极限的概念,以及它们在无穷集合序列中的应用。通过对极限的分析,展示了如何从下极限和上极限中获取序列的性质。
摘要由CSDN通过智能技术生成

教材电子版:《测度论与概率论基础-程士宏.pdf》
推荐网络课程:B站up主 antiRomance

第一章 可测空间和可测映射

§ \text{\S} § 1 集合及其运算

基本概念

我们将任意一个非空集合 X X X 称为 空间(space), X X X 的成员称为 元素(element)
元素 x x x 属于集合 A A A,记作 x ∈ a x \in a xa;反之,元素 x x x 不属于集合 A A A,记作 x ∉ a x \notin a x/a

我们将空间 X X X 上定义的实函数 I A ( x ) = { 1 , x ∈ A ; 0 , x ∉ A ; I_A(x)=\begin{cases}\\1,&x \in A;\\0, &x \notin A;\\\end{cases} IA(x)={1,0,xA;x/A;称为 A A A示性函数(indicator function),集合 A c = d e f { x : x ∉ A } A^c \xlongequal{def} \{x:x \notin A\} Acdef {x:x/A}称为集合 A A A补集(complementary set),若 x ∈ A ⇒ x ∈ B x \in A \Rightarrow x \in B xAxB则说集合 A A A 被集合 B B B 包含,或称集合 B B B 包含 集合 A A A,记为 A ⊂ B A \subset B AB B ⊃ A B \supset A BA
如果 A ⊂ B A \subset B AB B ⊃ A B \supset A BA,则称集合 A A A 等于 集合 B B B,记为 A = B A=B A=B

二元运算

给定集合 A A A 和集合 B B B,我们将集合 A ∪ B = d e f { x : x ∈ a ∨ x ∈ b } A ∩ B = d e f { x : x ∈ a ∧ x ∈ b } A ∖ B = d e f { x : x ∈ a ∧ x ∉ b } A △ B = d e f ( A ∖ B ) ∪ ( B ∖ A ) \begin{aligned} &A \cup B \xlongequal{def} \{x:x \in a \lor x \in b\}\\ &A \cap B \xlongequal{def} \{x:x \in a \land x \in b\}\\ &A \setminus B \xlongequal{def} \{x:x \in a \land x \notin b\}\\ &A \triangle B \xlongequal{def}(A \setminus B)\cup(B \setminus A)\\ \end{aligned} ABdef {x:xaxb}ABdef {x:xaxb}ABdef {x:xax/b}ABdef (AB)(BA)分别称为集合 A A A 与集合 B B B对称差
特别的,如果 B ⊂ A B \subset A BA,则称 A ∖ B A \setminus B AB A A A B B B真差;如果 A ∩ B = ∅ A \cap B = \varnothing AB=,则称 A A A B B B 不交

集合的并和交满足 交换律结合律,同时他们满足下列 分配律 ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C ) ( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A \cup B) \cap C = (A \cap C) \cup (B \cap C)\\ (A \cap B) \cup C = (A \cup C) \cap (B \cup C)\\ (AB)C=(AC)(BC)(AB)C=(AC)(BC)并和交的概念可以推广到任意多个集合的情形,对于一族集合 { A t , t ∈ T } \{A_t,t \in T\} {At,tT},集合 ⋃ t ∈ T A t = d e f { x : ∃ t ∈ T  s.t.  x ∈ A t } \bigcup_{t \in T}A_t \xlongequal{def} \{x:\exist t \in T \text{ s.t. } x\in A_t\} tTAtdef {x:tT s.t. xAt}称为它们的 ,集合 ⋂ t ∈ T A t = d e f { x : ∀ t ∈ T  s.t.  x ∈ A t } \bigcap_{t \in T}A_t \xlongequal{def} \{x:\forall t \in T \text{ s.t. } x \in A_t\} tTAtdef {x:tT s.t. xAt}称为他们的 ,特别的,如果 ∀ s , t ∈ T \forall s,t \in T s,tT,均有 A s ∩ A t = ∅ A_s \cap A_t = \varnothing AsAt=,那么称这族集合 { A t , t ∈ T } \{A_t,t \in T\} {At,tT} 两两不交,并和交之间满足下列 德摩根律(De-Morgan’s Law) { ⋃ t ∈ T A t } c = ⋂ t ∈ T A t c { ⋂ t ∈ T A t } c = ⋃ t ∈ T A t c \Big\{ \bigcup_{t \in T}A_t \Big\}^c=\bigcap_{t \in T}{A_t}^c\\\Big\{ \bigcap_{t \in T}A_t \Big\}^c=\bigcup_{t \in T}{A_t}^c {tTAt}c=tTAtc{tTAt}c=tTAtc

极限

{ A n , n = 1 , 2 , …   } \{A_n,n=1,2,\dots\} {An,n=1,2,} 是一个集合序列,如果对每个 n = 1 , 2 , … n=1,2,\dots n=1,2,,有 A n ⊂ A n + 1 A_n\subset A_{n+1} AnAn+1则称 A n A_n An 非降,记为 A n ↑ A_n\uparrow An,并把集合 lim ⁡ n → ∞ A n = d e f ⋃ n = 1 ∞ A n \lim\limits_{n \rightarrow \infin}A_n \xlongequal{def} \bigcup\limits_{n=1}^{\infin}A_n nlimAndef n=1An 叫做它的 极限;同理,如果对每个 n = 1 , 2 , … n=1,2,\dots n=1,2,,有 A n ⊃ A n + 1 A_n\supset A_{n+1} AnAn+1则称 A n A_n An 非增,记为 A n ↓ A_n\downarrow An,并把集合 lim ⁡ n → ∞ A n = d e f ⋂ n = 1 ∞ A n \lim\limits_{n \rightarrow \infin}A_n \xlongequal{def} \bigcap\limits_{n=1}^{\infin}A_n nlimAndef n=1An 叫做它的 极限,并将非增或非降的集合序列统称为 单调序列,因此 单调序列必有极限(因为这是定义)

对于一个任意的集合序列 { A n , n = 1 , 2 , …   } \{A_n,n=1,2,\dots\} {An,n=1,2,},由于集合运算的特点,我们可以构造出两个单调序列 { ⋂ k = n ∞ A k , n = 1 , 2 , … } { ⋃ k = n ∞ A k , n = 1 , 2 , … } \Big\{\bigcap\limits_{k=n}^{\infin}A_k,n=1,2,\dots\Big\}\\\Big\{\bigcup\limits_{k=n}^{\infin}A_k,n=1,2,\dots\Big\} {k=nAk,n=1,2,}{k=nAk,n=1,2,}使其分别是非降和非增的(以第一个单调序列为例,它代表了是除去有限个集合的可列交,交运算不可能使运算结果的规模变大,因而随着 n n n 的增大,进行交运算的集合会越来越少,所以第一个单调序列是非降的),因而我们可以对这两个单调序列取下列极限 lim inf ⁡ n → ∞ A n = d e f ⋃ n = 1 ∞ ⋂ k = n ∞ A k lim sup ⁡ n → ∞ A n = d e f ⋂ n = 1 ∞ ⋃ k = n ∞ A k \liminf\limits_{n\rightarrow\infin}A_n\xlongequal{def}\bigcup\limits_{n=1}^{\infin}\bigcap\limits_{k=n}^{\infin}A_k\\\limsup\limits_{n\rightarrow\infin}A_n\xlongequal{def}\bigcap\limits_{n=1}^{\infin}\bigcup\limits_{k=n}^{\infin}A_k nliminfAndef n=1k=nAknlimsupAndef n=1k=nAk我们将 lim inf ⁡ n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n nliminfAn 称为序列 { A n } \{A_n\} {An}下极限 lim sup ⁡ n → ∞ A n \limsup\limits_{n\rightarrow\infin}A_n nlimsupAn 称为序列 { A n } \{A_n\} {An}上极限

我们可以借用数学分析中 ϵ − N \epsilon-N ϵN 语言的思想进行分析:下极限 ⋃ n = 1 ∞ ⋂ k = n ∞ A k \bigcup\limits_{n=1}^{\infin}\bigcap\limits_{k=n}^{\infin}A_k n=1k=nAk 的意思是, ∃ n ≥ 1 , ∀ k ≥ n , ∀ x ∈ lim inf ⁡ n → ∞ A n , s.t.  x ∈ A k \exist n\ge1,\forall k \ge n,\forall x \in \liminf\limits_{n\rightarrow\infin}A_n,\text{s.t. }x \in A_k n1,kn,xnliminfAn,s.t. xAk,换言之,我们能找到某个大于等于 1 1 1 的阈值 n 0 n_0 n0,使得超过 n 0 n_0 n0 的所有 A k A_k Ak 均包含 lim inf ⁡ n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n nliminfAn 中的所有元素,这就意味着 lim inf ⁡ n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n nliminfAn 中的任一元素只在序列 { A n } \{A_n\} {An} 的有限个集合中不存在
同理,我们可以对上极限做出同样的分析,上极限 ⋂ n = 1 ∞ ⋃ k = n ∞ A k \bigcap\limits_{n=1}^{\infin}\bigcup\limits_{k=n}^{\infin}A_k n=1k=nAk 的意思是, ∀ n ≥ 1 , ∃ k ≥ n , ∀ x ∈ lim sup ⁡ n → ∞ A n , s.t.  x ∈ A k \forall n\ge1,\exist k \ge n,\forall x \in \limsup\limits_{n\rightarrow\infin}A_n,\text{s.t. }x \in A_k n1,kn,xnlimsupAn,s.t. xAk,也就是说,对于任何一个 n n n,我们都能找到一个大于 n n n k k k,使得 A k A_k Ak 包含 lim sup ⁡ n → ∞ A n \limsup\limits_{n\rightarrow\infin}A_n nlimsupAn 中的元素,这就意味着 lim sup ⁡ n → ∞ A n \limsup\limits_{n\rightarrow\infin}A_n nlimsupAn 中的任一元素存在于序列 { A n } \{A_n\} {An} 的无穷多个集合中

我们知道,下极限中的任一元素只在序列 { A n } \{A_n\} {An} 的有限个集合中不存在,据此可以得出下极限的任一元素存在于序列 { A n } \{A_n\} {An} 的无穷多个集合中,也就是说下极限能推知上极限,即 lim inf ⁡ n → ∞ A n ⊂ lim sup ⁡ n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n \subset \limsup\limits_{n\rightarrow\infin}A_n nliminfAnnlimsupAn反之却不能成立,例如上极限的任一元素存在于 { A n } \{A_n\} {An} 的子集 { A k , A k ∈ { A n } ∧ k ≡ 0 ( m o d 2 ) } \{A_k,A_k\in \{A_n\} \land k \equiv 0 \pmod 2\} {Ak,Ak{An}k0(mod2)} 中,显然上极限的元素存在于无穷多个集合中,但其仍在无穷多个集合中不存在,因而上极限无法推知下极限

特别的,如果有 lim inf ⁡ n → ∞ A n = lim sup ⁡ n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n = \limsup\limits_{n\rightarrow\infin}A_n nliminfAn=nlimsupAn我们将认为集合序列 { A n , n = 1 , 2 , …   } \{A_n,n=1,2,\dots\} {An,n=1,2,} 的极限 存在,并把 lim ⁡ n → ∞ A n = d e f lim inf ⁡ n → ∞ A n = lim sup ⁡ n → ∞ A n \lim\limits_{n\rightarrow\infin}A_n\xlongequal{def}\liminf\limits_{n\rightarrow\infin}A_n = \limsup\limits_{n\rightarrow\infin}A_n nlimAndef nliminfAn=nlimsupAn称为它的 极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值