教材电子版:《测度论与概率论基础-程士宏.pdf》
推荐网络课程:B站up主 antiRomance
第一章 可测空间和可测映射
§ \text{\S} § 1 集合及其运算
基本概念
我们将任意一个非空集合
X
X
X 称为 空间(space),
X
X
X 的成员称为 元素(element)
元素
x
x
x 属于集合
A
A
A,记作
x
∈
a
x \in a
x∈a;反之,元素
x
x
x 不属于集合
A
A
A,记作
x
∉
a
x \notin a
x∈/a
我们将空间
X
X
X 上定义的实函数
I
A
(
x
)
=
{
1
,
x
∈
A
;
0
,
x
∉
A
;
I_A(x)=\begin{cases}\\1,&x \in A;\\0, &x \notin A;\\\end{cases}
IA(x)={1,0,x∈A;x∈/A;称为
A
A
A 的 示性函数(indicator function),集合
A
c
=
d
e
f
{
x
:
x
∉
A
}
A^c \xlongequal{def} \{x:x \notin A\}
Acdef{x:x∈/A}称为集合
A
A
A 的 补集(complementary set),若
x
∈
A
⇒
x
∈
B
x \in A \Rightarrow x \in B
x∈A⇒x∈B则说集合
A
A
A 被集合
B
B
B 包含,或称集合
B
B
B 包含 集合
A
A
A,记为
A
⊂
B
A \subset B
A⊂B 或
B
⊃
A
B \supset A
B⊃A
如果
A
⊂
B
A \subset B
A⊂B 且
B
⊃
A
B \supset A
B⊃A,则称集合
A
A
A 等于 集合
B
B
B,记为
A
=
B
A=B
A=B
二元运算
给定集合
A
A
A 和集合
B
B
B,我们将集合
A
∪
B
=
d
e
f
{
x
:
x
∈
a
∨
x
∈
b
}
A
∩
B
=
d
e
f
{
x
:
x
∈
a
∧
x
∈
b
}
A
∖
B
=
d
e
f
{
x
:
x
∈
a
∧
x
∉
b
}
A
△
B
=
d
e
f
(
A
∖
B
)
∪
(
B
∖
A
)
\begin{aligned} &A \cup B \xlongequal{def} \{x:x \in a \lor x \in b\}\\ &A \cap B \xlongequal{def} \{x:x \in a \land x \in b\}\\ &A \setminus B \xlongequal{def} \{x:x \in a \land x \notin b\}\\ &A \triangle B \xlongequal{def}(A \setminus B)\cup(B \setminus A)\\ \end{aligned}
A∪Bdef{x:x∈a∨x∈b}A∩Bdef{x:x∈a∧x∈b}A∖Bdef{x:x∈a∧x∈/b}A△Bdef(A∖B)∪(B∖A)分别称为集合
A
A
A 与集合
B
B
B 的 并、交、差 和 对称差
特别的,如果
B
⊂
A
B \subset A
B⊂A,则称
A
∖
B
A \setminus B
A∖B 为
A
A
A 和
B
B
B 的 真差;如果
A
∩
B
=
∅
A \cap B = \varnothing
A∩B=∅,则称
A
A
A 与
B
B
B 不交
集合的并和交满足 交换律 和 结合律,同时他们满足下列 分配律: ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C ) ( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A \cup B) \cap C = (A \cap C) \cup (B \cap C)\\ (A \cap B) \cup C = (A \cup C) \cap (B \cup C)\\ (A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C)并和交的概念可以推广到任意多个集合的情形,对于一族集合 { A t , t ∈ T } \{A_t,t \in T\} {At,t∈T},集合 ⋃ t ∈ T A t = d e f { x : ∃ t ∈ T s.t. x ∈ A t } \bigcup_{t \in T}A_t \xlongequal{def} \{x:\exist t \in T \text{ s.t. } x\in A_t\} t∈T⋃Atdef{x:∃t∈T s.t. x∈At}称为它们的 并,集合 ⋂ t ∈ T A t = d e f { x : ∀ t ∈ T s.t. x ∈ A t } \bigcap_{t \in T}A_t \xlongequal{def} \{x:\forall t \in T \text{ s.t. } x \in A_t\} t∈T⋂Atdef{x:∀t∈T s.t. x∈At}称为他们的 交,特别的,如果 ∀ s , t ∈ T \forall s,t \in T ∀s,t∈T,均有 A s ∩ A t = ∅ A_s \cap A_t = \varnothing As∩At=∅,那么称这族集合 { A t , t ∈ T } \{A_t,t \in T\} {At,t∈T} 两两不交,并和交之间满足下列 德摩根律(De-Morgan’s Law) { ⋃ t ∈ T A t } c = ⋂ t ∈ T A t c { ⋂ t ∈ T A t } c = ⋃ t ∈ T A t c \Big\{ \bigcup_{t \in T}A_t \Big\}^c=\bigcap_{t \in T}{A_t}^c\\\Big\{ \bigcap_{t \in T}A_t \Big\}^c=\bigcup_{t \in T}{A_t}^c {t∈T⋃At}c=t∈T⋂Atc{t∈T⋂At}c=t∈T⋃Atc
极限
设 { A n , n = 1 , 2 , … } \{A_n,n=1,2,\dots\} {An,n=1,2,…} 是一个集合序列,如果对每个 n = 1 , 2 , … n=1,2,\dots n=1,2,…,有 A n ⊂ A n + 1 A_n\subset A_{n+1} An⊂An+1则称 A n A_n An 非降,记为 A n ↑ A_n\uparrow An↑,并把集合 lim n → ∞ A n = d e f ⋃ n = 1 ∞ A n \lim\limits_{n \rightarrow \infin}A_n \xlongequal{def} \bigcup\limits_{n=1}^{\infin}A_n n→∞limAndefn=1⋃∞An 叫做它的 极限;同理,如果对每个 n = 1 , 2 , … n=1,2,\dots n=1,2,…,有 A n ⊃ A n + 1 A_n\supset A_{n+1} An⊃An+1则称 A n A_n An 非增,记为 A n ↓ A_n\downarrow An↓,并把集合 lim n → ∞ A n = d e f ⋂ n = 1 ∞ A n \lim\limits_{n \rightarrow \infin}A_n \xlongequal{def} \bigcap\limits_{n=1}^{\infin}A_n n→∞limAndefn=1⋂∞An 叫做它的 极限,并将非增或非降的集合序列统称为 单调序列,因此 单调序列必有极限(因为这是定义)
对于一个任意的集合序列 { A n , n = 1 , 2 , … } \{A_n,n=1,2,\dots\} {An,n=1,2,…},由于集合运算的特点,我们可以构造出两个单调序列 { ⋂ k = n ∞ A k , n = 1 , 2 , … } { ⋃ k = n ∞ A k , n = 1 , 2 , … } \Big\{\bigcap\limits_{k=n}^{\infin}A_k,n=1,2,\dots\Big\}\\\Big\{\bigcup\limits_{k=n}^{\infin}A_k,n=1,2,\dots\Big\} {k=n⋂∞Ak,n=1,2,…}{k=n⋃∞Ak,n=1,2,…}使其分别是非降和非增的(以第一个单调序列为例,它代表了是除去有限个集合的可列交,交运算不可能使运算结果的规模变大,因而随着 n n n 的增大,进行交运算的集合会越来越少,所以第一个单调序列是非降的),因而我们可以对这两个单调序列取下列极限 lim inf n → ∞ A n = d e f ⋃ n = 1 ∞ ⋂ k = n ∞ A k lim sup n → ∞ A n = d e f ⋂ n = 1 ∞ ⋃ k = n ∞ A k \liminf\limits_{n\rightarrow\infin}A_n\xlongequal{def}\bigcup\limits_{n=1}^{\infin}\bigcap\limits_{k=n}^{\infin}A_k\\\limsup\limits_{n\rightarrow\infin}A_n\xlongequal{def}\bigcap\limits_{n=1}^{\infin}\bigcup\limits_{k=n}^{\infin}A_k n→∞liminfAndefn=1⋃∞k=n⋂∞Akn→∞limsupAndefn=1⋂∞k=n⋃∞Ak我们将 lim inf n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n n→∞liminfAn 称为序列 { A n } \{A_n\} {An} 的 下极限, lim sup n → ∞ A n \limsup\limits_{n\rightarrow\infin}A_n n→∞limsupAn 称为序列 { A n } \{A_n\} {An} 的 上极限
我们可以借用数学分析中
ϵ
−
N
\epsilon-N
ϵ−N 语言的思想进行分析:下极限
⋃
n
=
1
∞
⋂
k
=
n
∞
A
k
\bigcup\limits_{n=1}^{\infin}\bigcap\limits_{k=n}^{\infin}A_k
n=1⋃∞k=n⋂∞Ak 的意思是,
∃
n
≥
1
,
∀
k
≥
n
,
∀
x
∈
lim inf
n
→
∞
A
n
,
s.t.
x
∈
A
k
\exist n\ge1,\forall k \ge n,\forall x \in \liminf\limits_{n\rightarrow\infin}A_n,\text{s.t. }x \in A_k
∃n≥1,∀k≥n,∀x∈n→∞liminfAn,s.t. x∈Ak,换言之,我们能找到某个大于等于
1
1
1 的阈值
n
0
n_0
n0,使得超过
n
0
n_0
n0 的所有
A
k
A_k
Ak 均包含
lim inf
n
→
∞
A
n
\liminf\limits_{n\rightarrow\infin}A_n
n→∞liminfAn 中的所有元素,这就意味着
lim inf
n
→
∞
A
n
\liminf\limits_{n\rightarrow\infin}A_n
n→∞liminfAn 中的任一元素只在序列
{
A
n
}
\{A_n\}
{An} 的有限个集合中不存在
同理,我们可以对上极限做出同样的分析,上极限
⋂
n
=
1
∞
⋃
k
=
n
∞
A
k
\bigcap\limits_{n=1}^{\infin}\bigcup\limits_{k=n}^{\infin}A_k
n=1⋂∞k=n⋃∞Ak 的意思是,
∀
n
≥
1
,
∃
k
≥
n
,
∀
x
∈
lim sup
n
→
∞
A
n
,
s.t.
x
∈
A
k
\forall n\ge1,\exist k \ge n,\forall x \in \limsup\limits_{n\rightarrow\infin}A_n,\text{s.t. }x \in A_k
∀n≥1,∃k≥n,∀x∈n→∞limsupAn,s.t. x∈Ak,也就是说,对于任何一个
n
n
n,我们都能找到一个大于
n
n
n 的
k
k
k,使得
A
k
A_k
Ak 包含
lim sup
n
→
∞
A
n
\limsup\limits_{n\rightarrow\infin}A_n
n→∞limsupAn 中的元素,这就意味着
lim sup
n
→
∞
A
n
\limsup\limits_{n\rightarrow\infin}A_n
n→∞limsupAn 中的任一元素存在于序列
{
A
n
}
\{A_n\}
{An} 的无穷多个集合中
我们知道,下极限中的任一元素只在序列 { A n } \{A_n\} {An} 的有限个集合中不存在,据此可以得出下极限的任一元素存在于序列 { A n } \{A_n\} {An} 的无穷多个集合中,也就是说下极限能推知上极限,即 lim inf n → ∞ A n ⊂ lim sup n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n \subset \limsup\limits_{n\rightarrow\infin}A_n n→∞liminfAn⊂n→∞limsupAn反之却不能成立,例如上极限的任一元素存在于 { A n } \{A_n\} {An} 的子集 { A k , A k ∈ { A n } ∧ k ≡ 0 ( m o d 2 ) } \{A_k,A_k\in \{A_n\} \land k \equiv 0 \pmod 2\} {Ak,Ak∈{An}∧k≡0(mod2)} 中,显然上极限的元素存在于无穷多个集合中,但其仍在无穷多个集合中不存在,因而上极限无法推知下极限
特别的,如果有 lim inf n → ∞ A n = lim sup n → ∞ A n \liminf\limits_{n\rightarrow\infin}A_n = \limsup\limits_{n\rightarrow\infin}A_n n→∞liminfAn=n→∞limsupAn我们将认为集合序列 { A n , n = 1 , 2 , … } \{A_n,n=1,2,\dots\} {An,n=1,2,…} 的极限 存在,并把 lim n → ∞ A n = d e f lim inf n → ∞ A n = lim sup n → ∞ A n \lim\limits_{n\rightarrow\infin}A_n\xlongequal{def}\liminf\limits_{n\rightarrow\infin}A_n = \limsup\limits_{n\rightarrow\infin}A_n n→∞limAndefn→∞liminfAn=n→∞limsupAn称为它的 极限