单项式(monomial):
由数或字母(变量,未知数)的积组成的代数式叫做单项式(整式,非分式)。
1)单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1);
2)分数和字母的积的形式也是单项式。
3)单项式中的数字因数叫做这个单项式的系数(Coefficient),一个单项式中,所有字母的指数的和叫做这个单项式的次数(Degree of a monomial)。单项式是几次,就叫做几次单项式。
4)分母含有字母的式子不属于单项式,是分式,而单项式属于整式。
多项式(polynomial):
在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。
1)多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项;
2)广义上讲,1个或0个单项式的和也算多项式;
3)单项式和多项式统称为整式。
代数式(algebraic expression):
由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式(用运算符号把表示数的字母或数连接起来的式子),代数式不能含有“≥”、“=”、“<”、“≠”符号等。
代数(algebra):
由算术(arithmetic)演变来的,研究包含未知变量的表达式的运算规则和过程的数学,是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。
1)代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
2)“代数”义为用符号代替数,本质上是一个抽象过程:
从具体的、确定的数到抽象的、未定的数。这是第一步抽象。
当我们把注意力集中于所研究对象的运算和运算律,而忽略所代之“数”的具体类别时,完成了进一步的抽象。
代数,无数胜有数,无招胜有招,无可破,故无所不破:
1+2叫做算术;
a+b叫做代数。
3)运算对象具体是什么已经不重要了。重要的是能对它做什么运算,以及这些运算遵循什么运算律。
这时,代数所代之“数”就不是狭义的数,而是具有某些运算并满足某些运算律的一些对象了。
4)代数最早是一个消元的技巧,后来发展成了研究多项式根的学科。而在群被发明以后,代数就变成了在集合上做运算。
5)总的来说,就是从对具体对象的研究升级到对 对象之间的关系 的研究,越来越抽象,越来越本质,刻画能力也越来越强。