大模型使用——提示词prompt学习笔记

免责声明:本笔记仅供学习交流使用,不用做任何商业用途!
最近文心一言、豆包用多了开始研究如何使用提示词。于是计划学习
什么是prompt
关于什么是提示词prompt,以上链接给出了解释
反手给世界一些草台班子的震撼
以下是学习以上链接的笔记(如何快速了解某领域)
1、【产业链mapping】
你是一位资深的投资分析师,师承巴菲特,拥有20年的从业经验,具有快速了解任何领域的能力,专长于各个的行业研究与公司分析,擅长识别一个行业和一个公司是否优质。你还拥有优秀的财务分析能力、数据分析能力和辩证思维能力等等。 请对新能源汽车行业做产业链mapping,要求: 1.需要列出产业链中的每个环节,尽量拆分细致 2.对产业链环节中的主要公司做介绍,包括其品牌和产品的战略定位、主要产品型号、核心技术和竞争壁垒、近年来的发展趋势、营收和利润率等信息(需要尽量详细;如营收这样的信息,要尽量给出具体的量化数据,可从最新财报里抓取)
2、【竞争格局和链主分析】
下一步: 1.列出产业链的价值分布,每个环节各自获取了多少的利润占比(要求以表格形式列出,上/中/下游为一列,具体环节为一列,利润占比为一列) 2.波特五力分析 3.哪个环节是该产业链的“链主”?
3、【悍跳预言家和历史学家】
下一步: 1.梳理出目标行业引入期、成长期、成熟期、衰退期分别是哪些时间;其中哪些因素推动了阶段的变化(可以是政治、经济、社会、技术等维度的);每个阶段其中玩家的竞争方式有哪些变化、行业规模是多少、链主地位会不会发生改变等等(这一步里的所有问题,涉及要预测的,请你进行预测) 2.并分析总结该行业二级上市公司股价与估值水平的走势,以及一级市场中的投融资趋势 3.最后分析该产业目前是否存在泡沫
4、【新闻趣事搜集】
再列出最近一年这个领域里最重要的新闻动态、趣事轶闻、关键人物发言,各20条,每条都要附上信息来源的链接

待续

### 开源大模型开发平台推荐 对于希望参与开源大模型开发的研究者或开发者来说,选择合适的开发平台至关重要。这些平台不仅提供强大的计算资源支持,还集成了多种工具链和服务来简化模型训练、部署以及管理流程。 #### 一、主流开源大模型开发平台介绍 以下是一些被广泛使用的开源大模型开发平台: 1. **Hugging Face** Hugging Face 是目前最受欢迎的大规模预训练语言模型开发和共享平台之一。它提供了丰富的 API 和工具包(如 Transformers),允许用户轻松加载、微调和分享各种类型的大型语言模型[^2]。此外,其 Model Hub 功能让用户可以快速找到适合特定应用场景的高质量模型实例。 2. **Google Colab** Google 提供了一个基于云端笔记本环境的服务——Colaboratory (简称 Colab),该服务免费向公众开放 GPU/TPU 资源访问权限,非常适合初学者尝试运行复杂的机器学习算法或者测试新想法而无需本地配置高性能硬件设备的支持[^5]。 3. **Kaggle Kernels** Kaggle 不仅是一个数据科学竞赛网站,同时也拥有功能强大且易于使用的在线 Jupyter Notebook 编辑器(Kernel) 。通过连接到互联网上的公共存储库(比如 GitHub), 用户可以直接导入外部依赖项并立即开始实验工作流设计过程中的每一步骤, 包括但不限于探索性数据分析阶段直至最终提交预测结果文件为止整个周期内的所有操作都可以在一个地方完成[^3]. 4. **AWS SageMaker Studio Lab** Amazon Web Services(AWS)推出的SageMaker Studio Lab是一项针对学术界和个人爱好者的全新服务选项。这项服务旨在降低进入门槛的同时保留企业级特性如版本控制系统集成能力等高级别的生产力提升措施;更重要的是,它可以按需扩展至更大规模的工作负载级别以满足更复杂项目的性能需求标准[^1]. 5. **阿里云天池实验室** 阿里巴巴集团旗下的云计算品牌—阿里云也推出了专门面向科研人员和技术爱好者设立的一个虚拟化研究空间即“天池”。在这里不仅可以获取最新的研究成果展示机会还可以与其他志同道合的朋友一起交流合作共同进步成长成为更好的自己[^4]. #### 二、代码示例:如何利用 Hugging Face 进行简单的大模型推理 下面给出一段 Python 示例程序演示如果借助于 `transformers` 库实现简单的文本生成任务。 ```python from transformers import pipeline # 加载预定义好的pipeline对象 text_generator = pipeline('text-generation', model='gpt2') # 输入提示词 prompt_text = "Once upon a time" # 执行推断得到延续后的句子列表 generated_texts = text_generator(prompt_text, max_length=50) for idx, gen_txt in enumerate(generated_texts): print(f"{idx}: {gen_txt['generated_text']}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值