利用NHANES数据库发表53分的文章,统计学方法写得和全面

研究发现,尽管hs-肌钙蛋白T与hs-肌钙蛋白I之间相关性有限,但各类型的hs-肌钙蛋白I测定与一般人群的全因和心血管死亡率有显著关联。这表明hs-肌钙蛋白I测定可能提供更个性化的风险信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023年6月,美国约翰霍普金斯大学的学者在Eur Heart J(一区,IF=53.86)发表题为:High-sensitivity troponins and mortality in the general population 的研究论文。

这项研究目的是探索四种测量心肌肌钙蛋白T和肌钙蛋白I方法之间的相关性,以及与死亡率的比较关联。结果表明,hs-肌钙蛋白T和三种hs-肌钙蛋白I测定之间只有适度的相关性,并且hs-肌钙蛋白I测定可以为一般人群的死亡率提供不同的风险信息。

09eb87bb44ddc454e991209c7622bdb0.png

摘要与主要结果

一、摘要

背景: 心肌肌钙蛋白T和肌钙蛋白I可以使用多种高灵敏度(hs)测定法进行测量。本研究旨在表征四种此类测定之间的相关性,并测试它们与死亡率的比较关联。

方法:在1999-2004年全国健康和营养检查调查中,在无心血管疾病的成年人中,使用一种测定法(罗氏)测量hs-肌钙蛋白T,使用三种测定法(雅培Abbott,西门子Siemens和Ortho)测量hs-肌钙蛋白I。Cox回归用于估计与全因死亡率和心血管死亡率的关联。比较每种测定浓度的皮尔逊相关系数范围为0.53至0.77。

结果:2188名参与者中有488人死亡(9810名心血管)。每个肌钙蛋白测定[对数转换,每1个标准差(SD)]与全因死亡率独立相关:Abbott肌钙蛋白I的危险比(HR)1.20[95%置信区间(CI)1.13-1.28];西门子hs-肌钙蛋白I的HR 1.10(95%CI 1.02–1.18);Ortho肌钙蛋白I的HR 1.23(95%CI 1.14–1.33);罗氏hs-肌钙蛋白T的HR 1.31(95%CI 1.21–1.42)。每个hs-肌钙蛋白测定也与心血管死亡率独立相关(HR 1.44至1.65/1SD)。在校正了hs-肌钙蛋白I后,hs-肌钙蛋白T与全因死亡率和心血管死亡率的相关性仍然显著。此外,在相互调整来自其他个体测定的肌钙蛋白I后,肌钙蛋白I的相关性仍然显著:例如,调整西门子测定后Abbott的心血管死亡率HR 1.46(95%CI 1.19–1.79),调整Ortho测定后Abbott的HR 1.29(95%CI 1.09–1.53)。 

结论:本研究表明hs-肌钙蛋白T和三种hs-肌钙蛋白I测定之间只有适度的相关性,并且hs-肌钙蛋白I测定可以为一般人群的死亡率提供不同的风险信息。

二、研究结果

1. 美国成年人肌钙蛋白升高的患病率

hs-肌钙蛋白T值高于制造商指定的性别特异性第99百分位的患病率为3.1%(660万)。肌钙蛋白I(Abbott)的0.6%(130万)、肌钙蛋白I(Siemens)的0.9%(200万)和肌钙蛋白I(Ortho)的0.7%(160万)。

988eb9b65f32316eb53d3f9820843733.png

2.高灵敏度肌钙蛋白与死亡率结果

在17.2年的中位随访中,有2188人死亡(488人死于心血管原因)。

所有四种测定,高灵敏度肌钙蛋白与全因和CVD死亡率密切且独立相关:Abbott肌钙蛋白I的危险比(HR)1.20[95%置信区间(CI)1.13-1.28];西门子hs-肌钙蛋白I的HR 1.10(95%CI 1.02–1.18);Ortho肌钙蛋白I的HR 1.23(95%CI 1.14–1.33);罗氏hs-肌钙蛋白T的HR 1.31(95%CI 1.21–1.42)。

每个hs-肌钙蛋白测定也与心血管死亡率独立相关(HR 1.44至1.65/1SD)。且每种测定与全因死亡率和心血管疾病死亡率之间的关联强度(斜率)总体相似。

b00414896648cb6a4abe4028568c1d19.png

3.调整变量后

在相互调整来自其他个体测定的肌钙蛋白I后,肌钙蛋白I的相关性仍然显著:例如,调整西门子测定后Abbott的心血管死亡率HR 1.46(95%CI 1.19–1.79),调整Ortho测定后Abbott的HR 1.29(95%CI 1.09–1.53)。

4866ca68f660e6deb3088da9dc25c420.png

4.分层分析

与年轻人相比,hs-肌钙蛋白与全因和心血管疾病死亡率的相关性在老年人(≥60岁)中往往更强。

44eaba78a0f2845ef6e0a31712e619ab.png

8ae99594978c3fbe8a49f6f37834aa09.png

5.敏感性分析/竞争性风险模型

将样本分层为基线肌钙蛋白I(Abbott)浓度高于或低于第75百分位的人,然后重复了连续Cox模型。这些分析表明,各种肌钙蛋白测定的独立预后价值存在于高浓度和低浓度下(即在整个肌钙蛋白值范围内)。在心血管疾病死亡的敏感性分析中,使用将非心血管疾病死亡作为竞争结果的Fine–Gray模型,结果与主要的Cox回归分析没有显著差异。

6.高敏肌钙蛋白测定浓度之间的不一致性 

测定之间的成对Pearson相关性适中,从hs-肌钙蛋白T和西门子hs-肌钙蛋白I的r=0.53到Abbott和西门子hs肌钙蛋白I的r=0.77不等。回归线的典型偏差(RMSE)在0.45到0.76之间。

f7a5ef2ff8f229ba994749d796e1186e.png

设计与统计学方法

一、研究设计

P1999年至2004年NHANES无心血管疾病且有死亡信息的9810名18岁或以上的成年人。

O:四种方法测量血清样本中的肌钙蛋白浓度:

使用一种测定法(罗氏)测量hs-肌钙蛋白T,

使用三种测定法(雅培Abbott,西门子Siemens和Ortho)测量hs-肌钙蛋白I。

其他:人口统计和生活方式的自我报告信息,包括种族/民族、吸烟、家族史和药物使用。

S:纵向研究

二、统计方法

1.考虑权重。使用泰勒级数线性化获得了所有估计的标准误差。总结了美国成年人的加权患病率(使用2003-04年美国人口普查数据,以比例和数百万人为单位)。

1bc0084ac381b3b0318fe826fc58eb1d.png

2.对数变换为近似正态分布后,生成散点图,并评估四种肌钙蛋白测定与线性回归模型的均方根误差(RMSE)之间的成对皮尔逊相关系数。在这些相关性计算中,我们排除了浓度低于空白限值的参与者。

79aa3380d1a471b9b200db4999031e49.png

3我们根据每次测定的hs-肌钙蛋白浓度的四分位数对参与者进行交叉分类,并使用泊松回归生成热图来比较全因死亡率和心血管疾病死亡率的发病率(每1000人-年)。还根据肌钙蛋白升高状态和每种测定评估了全因死亡率和心血管疾病死亡率的累积发生率。

b25d876dd8b729d888a05173e0b7bc9a.png

4.使用Cox回归对基线hs-肌钙蛋白与事件全因和CVD死亡率的前瞻性关联进行建模。还使用限制性立方样条(第5、第35、第65和第95个百分位数处的节点)对hs-肌钙蛋白进行了建模,以灵活评估log(hs-肌钙蛋白)与全因和CVD死亡率之间的关联形状。 

d2e074c2a8aebfe2de360993442e5a56.png

5.调整不同变量:模型1包括年龄、性别和种族/民族。模型2包括模型1中的所有变量,加上BMI、总胆固醇、高密度脂蛋白胆固醇、收缩压、吸烟状况、糖尿病、心血管疾病家族史、降压药物的使用、降胆固醇药物的使用和eGFR。

4636590fc382e2ba94d2eaf1bebe195d.png

6.分层分析:并测试了年龄、性别和种族/民族群体的倍增效应修正。

326ea05229064d3d3bbb0c25813bd7e7.png

7.敏感性分析:①我们通过高于或低于第75百分位的基线hs-肌钙蛋白对Cox模型进行分层。②我们估计了每种hs-肌钙蛋白测定与非心血管疾病死亡的相关性。③我们使用竞争风险方法(即Fine–Gray模型)对CVD死亡率进行了分析,将非CVD死亡作为竞争结果处理。④我们使用C统计量来比较全因死亡率和心血管疾病死亡率的模型区分,将仅进行一次肌钙蛋白测定的基础模型与进行额外肌钙蛋白T或I测定的模型进行比较。

37c7894c272f899ed43bb1cbf9598bfb.png

8.使用软件STATA版本17.0进行分析。

ca08f09b3b39e5b3f98458608d385d28.png

Nhanes美国营养调查数据库的培训课程(直播回放)来了!

“Nhanes数据挖掘”课程(直播回放)! 欢迎报名, 发表文章即退款

内容概要:本文详细介绍了华为推出的面向全场景的布式操作系统HarmonyOS。HarmonyOS旨在打破设备间的壁垒,实现万物互联,通过布式软总线布式任务调度等核心技术,让不同设备协同工作,如手机、平板、智能家居等设备间无缝流转任务。其应用生态涵盖教育、金融、出行等多个领域,华为通过资金、技术支持流量扶持吸引开发者,推动生态繁荣。HarmonyOS从2019年首次发布至今,经历了多个版本迭代,性能安全性不断提升,用户体验更加智能便捷。尽管面临应用生态丰富度不足、市场竞争压力等挑战,华为通过优化开发工具、加强市场推广等策略积极应对。未来,HarmonyOS将在布式技术、AI融合隐私安全等方面持续创新,并在智能家居、车联网、工业互联网等领域拓展生态。 适合人群:对操作系统技术感兴趣的专业人士、开发者、科技爱好者。 使用场景及目标:①了解HarmonyOS的技术架构布式技术的特点;②探讨HarmonyOS在智能家居、车联网等领域的应用前景;③评估HarmonyOS对现有操作系统市场的潜在影响。 阅读建议:HarmonyOS作为一款面向全场景的操作系统,不仅涉及技术实现,还包括生态建设用户体验。因此,在阅读过程中,应重点关注其技术优势、应用场景及未来发展潜力,结合自身需求思考其在实际生活工作中的应用价值。
### NHANES 数据库的使用方法主要用途 #### 使用方法 NHANESraw 数据集是从 NHANES 官方网站直接获取并经过重新编码后的数据集合,其目的是使 R 用户能够更加便捷地操作析数据[^1]。对于希望深入挖掘 NHANES 数据的研究人员来说,可以通过特定工具包来简化流程。例如,在医学数据析领域中,R 语言提供了多种功能支持 NHANES 的应用,包括但不限于下载数据清单、搜索表名以及执行变量汇总等功能[^3]。 此外,针对复杂的统计需求,还存在专门设计用于 NHANES 加权析的模块化解决方案,如 `www.zstats.cn/software2/nhanes_exact_trial_beta/` 所提供的资源可以辅助完成精确计算任务[^2]。 #### 主要用途 NHANES 是一项长期运行的大规模全国代表性调查项目,它所提供的公开健康数据被广泛应用于多个方面: - **流行病学研究**:利用这些详尽记录的人口特征与健康状况指标开展疾病布规律探讨; - **健康政策制定**:基于科学证据评估当前医疗体系有效性,并指导未来改革方向; - **公共卫生策略规划**:识别高风险群体及其潜在威胁因素从而采取预防措施; 以下是实现上述目标的一些具体技术手段展示: ```r library(NHANES) # 下载 NHANES 数据列表 data_list <- nhanes_data_list() # 查找某张表格是否存在 table_exists <- any(grepl("Demographics", data_list)) if (table_exists){ demographics_table <- read_nhanes("DEMO_G.XPT") # 假设文件名为 DEMO_G.XPT } summary(demographics_table$Age) ``` 以上代码片段展示了如何借助 R 中的相关函数初步接触 NHANES 资料库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值