finalfit包可用于统计模型结果输出和可视化。它旨在简化回归模型报告的生成过程。finalfit提供了一种简单的方式来创建回归模型的结果,生成的三线表和森林图直接用于论文。
finalfit包功能很强大,主要包括:
1.创建回归模型的表格:finalfit可以根据回归模型对象(如lm、glm等)创建表格,展示变量的系数、标准误、显著性和置信区间等统计指标。
2.模型比较:finalfit允许用户同时比较多个模型,并生成一个表格来显示模型之间的比较结果。
3.模型拟合指标:finalfit可以计算和展示回归模型的拟合指标,如R²、AIC、BIC等。
4.变量筛选:finalfit提供了一些函数来执行变量筛选,例如基于p值或信息准则的变量选择。
5.图形可视化:finalfit可以创建变量的分布图和模型拟合图,以及用于比较模型的棒图和散点图。
6.自定义报告输出:finalfit提供了一些选项,使用户能够自定义报告输出的样式、标签和格式。finalfit包主要适用于线性回归模型、逻辑回归模型、Cox比例风险模型和广义线性模型(GLM)。本篇推文向大家介绍使用finalfit包做线性回归模型、逻辑回归模型、Cox比例风险模型,并将结果以三线表和森林图的形式输出。
1#加载包
2library(finalfit)
3library(dplyr)
4library(ggplot2)
1.表1:基本特征表
1data(colon_s)
2explanatory = c("age", "age.factor", "sex.factor", "obstruct.factor")
3dependent = "perfor.factor"
4colon_s %>%
5 summary_factorlist(dependent, explanatory,
6 p=TRUE, add_dependent_label=TRUE) -> t1
7knitr::kable(t1, row.names=FALSE, align=c("l", "l", "r", "r", "r"))

2.线性回归,生成三线表并将结果可视化
1explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
2dependent = "nodes"
3colon_s %>%
4 finalfit(dependent, explanatory) -> t7
5knitr::kable(t7, row.names=FALSE, align=c("l", "l", "r", "r", "r"))
6colon_s %>%
7 coefficient_plot(dependent, explanatory)


3.Logistic回归,生成三线表并将结果可视化
1explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
2explanatory_multi = c("age.factor", "obstruct.factor")
3dependent = 'mort_5yr'
4colon_s %>%
5 finalfit(dependent, explanatory, explanatory_multi) -> t4
6knitr::kable(t4, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
7colon_s %>%
8 or_plot(dependent, explanatory,
9 plot_opts=list(xlab("OR, 95% CI"), theme(axis.title = element_text(size=12))))


4.Cox比例风险模型,生成三线表并将结果可视化
1explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
2dependent = "Surv(time, status)"
3colon_s %>%
4 finalfit(dependent, explanatory) -> t6
5knitr::kable(t6, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
6colon_s %>%
7 hr_plot(dependent, explanatory, dependent_label = "Survival")


5.Kaplan-Meier生存曲线图
1explanatory = c("perfor.factor")
2dependent = "Surv(time, status)"
3colon_s %>%
4 surv_plot(dependent, explanatory,
5 xlab="Time (days)", pval=TRUE, legend="none")

finalfit包的使用方法和示例可以在其官方文档中找到,大家感兴趣的话可以自行学习。
本公众提供各种科研服务了!
一、课程培训 2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看: 发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名 二、统计服务 为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情: |