编者
众所周知,数据的缺失会对结果的真实性产生巨大的影响,例如偏倚风险的增加、样本代表性不足、数据丢失、统计能力的下降等。
尤其是在观察性研究和临床试验中,数据完整关乎研究的效度与信度。然而,因受试者中途退出、数据采集错误、填答不完整等各种状况,数据缺失在所难免。
因此,研究者若想得出经得住推敲的研究结果,必须学会根据情况选用合适的统计方法以应对数据缺失问题。本文为大家介绍了一个关于观察性研究中数据缺失如何处理的案例,该案例详细介绍了缺失数据情况以及插补流程。
观察性研究包括横断面研究、队列研究、病例对照研究。
观察性研究缺失数据由众多原因导致:
本公众号回复“立春”即可获得“立春”临床统计学沙龙PPT,数据等资料 |
案例分享
2021年2月,美国约翰霍普金斯大学学者在《Circulation》(一区,IF=37.8)发表题为:"Myocardial Injury in Severe COVID-19 Compared With Non–COVID-19 Acute Respiratory Distress Syndrome" 的研究论文。
一、摘要
标题:重症 COVID-19 的心肌损伤与非 COVID-19 急性呼吸窘迫综合征的比较
背景: 在 2019 冠状病毒病 (COVID-19) 中心肌损伤的流行病学和临床意义方面仍然存在知识差距。我们旨在确定与COVID-19无关的急性呼吸窘迫综合征(ARDS)相比,重症COVID-19心肌损伤的患病率和结局。
方法: 我们纳入了 2020 年 3 月 15 日至 6 月 11 日期间来自 5 家医院的 COVID-19 插管患者,并评估了肌钙蛋白水平。我们将其与ARDS中心肌损伤队列研究的患者进行了比较,并进行了生存分析,主要结局是与心肌损伤相关的院内死亡。此外,我们还进行了线性回归,以确定与COVID-19心肌损伤相关的临床因素。
结果:在 243