影响因素研究中可以采用先单后多或逐步回归的方法进行,先单后多平时比较常见,这里主要讲一下逐步回归!
当样本量较小而自变量数量过多时,可以考虑使用逐步回归进一步减少多因素模型中的变量。但可能会出现这样的尴尬情况——有些变量P值大于0.05但仍保留在逐步回归模型中!
实际上这是正常的,多因素逐步回归筛选自变量,无论是SPSS,还是R语言,都不是根据P值<0.05来确定留下的自变量;SPSS默认是P值<0.1的标准,R语言是AIC准则。
但是这在结果解释的时候会带来一些难题,像下图中的"SBP","DBP","Race"应该如何讨论与结局之间的关系呢?明明多因素没有统计学意义,但最终留在了逐步回归模型中。
只是目前无论是SPSS还是R语言,都没有办法一步到位实现逐步回归最终结果中的全部变量P值<0.05!因此,这里给大家推荐一个统计小工具——风暴统计,可以快速解决这个问题,避免P值大于0.05的变量最终被保留在逐步回归模型中!
目前风暴统计平台基于R语言可以一站式搞定逐步线性回归,便捷、高效、准确性有保障!
线性回归具体网址:https://shiny.medsta.cn/line1/
或者百度、必应Bing搜索“风暴统计”
本平台上线的所有工具都是免费的
下面通过一份示例数据进行平台实操展示:
数据导入与整理
首先,进入风暴统计网站,点击"风暴智能统计"——"线性回归分析",这里有3个链接,是为了防止网站在线人数过多进行的分流设置,大家任选其一使用即可!
接着,根据下方截图提示,"数据导入"——"导入外部数据"——"Browse...",选择我们的数据集,然后下方就会出现我们的数据集概览啦!
多重线性回归
然后,就到了关键的回归分析了!‘
第一,选入变量,包括因变量、定量自变量、分类自变量
第二,开展逐步回归+P限制。
关于逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于阈值的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归!
如果我们想要避免P值大于0.05的变量最终被保留在逐步回归模型中,可以选择“根据P<0.05筛选”的逐步回归!
选择完毕后,平台给出了多种结果展示,仅展示单因素回归结果,仅展示多因素回归结果,单因素+多因素显示在统一张表格中!
3.下载结果
完成分析后,可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。
指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果,平台支持下载excel或word!
如果您在风暴统计平台的使用过程中有任何的建议或疑问,欢迎加入我们的讨论群!群里郑老师与助教会在群内解答!
统计机器人交流群