干货来了!Lancet杂志的临床试验论文,随机化分组如何开展?

临床试验,尤其是随机对照研究,是非常耗精力、成本和时间的项目,其数据与结果也非常容易受到干扰!随机原则是临床试验必须遵循的三个基本原则之一,也是临床试验设计的一大难题。今天来给大家讲点干货!

随机化是指临床研究中的每位受试者均有同等的概率被分配到试验组或对照组,使各种已知和未知的影响因素在试验组和对照组间的分布保持均衡,也是临床研究进行有效性和安全性评价的前提,其过程不受研究者和受试者主观意愿的影响。从而使受试者的基线特征(包括已知和未知的非研究因素)在治疗组间的分布趋于相似,以期达到组间基线均衡。

常用的随机分配方法包括简单随机、区组随机、分层随机、分层区组随机化及适应性随机等,下面来简单介绍一下。

简单随机化分组

简单随机化分组又称为完全随机化分组,是指以特定概率将受试者分配到每个治疗组,分配到每个治疗组的概率

  • 可以相等(例如,1:1 分配给试验组和对照组);

  • 也可以不等(例如,2:1分配给试验组和对照组)。

受试者随机分配到各个治疗组的概率与受试者的基线特征或预期结局等因素无关。

方法:常通过掷硬币或随机数字表,或用计算机产生随机数来进行随机化,在事先或者实施过程中不作任何限制和干预或调整。

ab715ebd50f364a2cadbb63d07098035.png

简单随机化分组示意图

区组随机

区组随机化分组也叫均衡随机化或限制性随机化是指将受试者在每个区组内进行随机分配的过程,即将随机加以约束,使各处理组的分配更加平衡,以满足研究要求。

  • 在一个区间内包含一个预定的处理分组数目和比例。

  • 区组(block)是对受试对象进行划分,即由若干特征相似的试验对象组成

  • 区组长度(区组内计划入组的受试者数)可以相等,也可以不等,关键是区组长度需保持盲态,不应在研究方案中描述区组长度。

与简单随机相比,区组随机可使同一时间段同一区组内的受试者在各治疗组间的分配比例符合预设要求,能够避免简单随机可能产生的不平衡。

3bf0f6468600bd478c29200459b78c0d.png

区组随机化分组示意图

分层随机

适用条件:如果某些基线特征(例如,受试者的病理诊断、年龄、性别、疾病的严重程度、生物标记物等)对药物的治疗效应影响较大,一旦这些因素在组间分布不均衡,将影响试验结果的评价。

先按重要基线特征对受试者进行分层,然后在每层内再进行独立的随机分配,即为分层随机。

  • 这些基线特征被称为随机分层因素

在分层基础上,如果各层内采用区组随机分配,则被称为分层区组随机。分层随机中,若各层内采用简单随机分配,则有可能导致组间分配比例偏离预先设定值。因此,可考虑采用分层区组随机。

192d4ab0a4a6493cb4bf2f645747cd0c.png

分层随机化分组示意图

适应性随机

适应性随机是指根据已经入组的受试者信息来调整当前受试者被分配到不同治疗组概率的随机分配过程。适应性随机包括协变量适应性随机分配、应答适应性随机分配等。

与上述随机分配方法不同的是,适应性随机对当前受试者的随机分配依赖于已入组受试者的信息

适应性随机无法通过提前制作随机分配表的方式来实现,需要通过程序或软件来实现。适应性随机可能有增加Ⅰ类错误率的风险,应谨慎使用

不同的随机分配方法具有不同的特点,大家应根据各方面因素综合考虑选择合适的随机分配方法。正确地实施随机化是临床实验的关键所在,只有经过随机化分组,才能避免偏倚,排除系统误差。

接下来我们以实际的临床试验的文献为例子,看看分层随机化在临床试验中的具体运用吧。

文献分享

今天与诸位分析的这篇文章于2024年3月,是一项发表于医学顶刊柳叶刀《LANCET》的随机、双盲、安慰剂对照的Ⅲ期 ENGOT-cx11/GOG-3047/KEYNOTE-A18 临床试验,题为 ”Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/ GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial”。

37cde978a2c85c5ee5a299f840f6acd8.png

该研究已在 ClinicalTrials.gov 注册,NCT04221945,不对新参与者开放。

原文PDF获取方式:本公众号回复关键词“原文”

1.研究摘要

背景:派姆单抗已显示出对持续性、复发性或转移性宫颈癌的疗效。免疫疗法可能会增强放化疗的效果。在这项 3 期试验中,我们评估了局部晚期宫颈癌放化疗中添加派姆单抗的有效性和安全性。

方法:在这项随机、双盲、安慰剂对照的 3 期 ENGOT-cx11 /GOG-3047 /KEYNOTE-A18 临床试验中,在 30 个国家的 176 个医疗中心对患有新诊断、高危、使用具有集成网络响应的交互式语音应答系统将局部晚期宫颈癌随机分配 (1:1),每 3 周接受 5 个周期的派姆单抗 (200 mg) 或安慰剂加放化疗,随后接受 15 个周期的派姆单抗 (400 mg) )或安慰剂每 6 周一次。

  • 随机化按计划外束放射治疗类型(调强放射治疗或容积调强弧形治疗 vs 非调强放射治疗或非容积调强弧形治疗)、筛查时的宫颈癌分期(国际妇产科联盟 2014 年 IB2-IIB 期淋巴结阳性 vs III-IVA 期)和计划总放射治疗(外束放射治疗加近距离放射治疗)以及剂量(<70 Gy vs ≥70 Gy 2 Gy 分次等效剂量)进行分层。

主要终点是根据实体瘤反应评估标准 1.1 版的无进展生存期(由研究者或通过组织病理学确认可疑疾病进展)和总生存期。主要分析是在意向治疗人群中进行的,其中包括所有随机分配的参与者。在接受治疗的人群中评估了安全性,其中包括所有随机分配的接受至少一剂研究治疗的患者。

结果:2020年6月9日至2022年12月15日期间,1060名参与者被随机分配接受治疗,其中529名被分配到派姆单抗联合放化疗组,531名被分配到安慰剂联合放化疗组。截至数据截止(2023 年 1 月 9 日),两个治疗组的中位随访时间均为 17.9 个月(IQR 11.3–22.3)。两组均未达到中位无进展生存期;派姆单抗联合放化疗组 24 个月时的发生率为 68%,而安慰剂联合放化疗组为 57%。疾病进展或死亡的风险比 (HR) 为 0.70(95% CI 0.55–0.89,p=0.0020),满足方案规定的主要目标。帕博利珠单抗-放化疗组 24 个月的总生存率为 87%,安慰剂-放化疗组为 81%(信息分数 42.9%)。死亡 HR 为 0.73 (0.49–1.07);这些数据并未超出统计显著性的界限。帕博利珠单抗-放化疗组中 3 级或以上不良事件发生率为 75%,安慰剂-放化疗组中为 69%。

结论:派姆单抗联合放化疗显著改善了新诊断的高危局部晚期宫颈癌患者的无进展生存期。

2.随机分层因素

本研究在随机化时按以下4个因素进行了分层

  • 计划外束放射治疗类型(调强放射治疗或容积调强弧形治疗 vs 非调强放射治疗或非容积调强弧形治疗)

  • 筛查时的宫颈癌分期(国际妇产科联盟 2014 年 IB2-IIB 期淋巴结阳性 vs III-IVA 期)

  • 计划总放射治疗(外束放射治疗加近距离放射治疗)

  • 剂量(<70 Gy vs ≥70 Gy 2 Gy 分次等效剂量)

6a42c314df4048869b2e4815d6149995.png

402c96fc9b4efed5b9ce6ea10b448c7a.png

从研究流程图可以看到,受试者分层随机化后进行了合并,再进行后续的统计分析,目的是进行控制混杂偏倚的分层分析。分层分析用于控制混杂偏倚的主要的方法包括:

  • 针对分类结局的CMH方法;

  • 针对结果变量为生存时间时的分层生存分析;

  • 针对偏态分布数据的分层分析方法。

94d78f226781fa82ec4c110dbf2225bd.png

意向治疗人群的试验概况

3.主要统计学方法

这项研究的主要结局是根据实体瘤反应评估标准 1.1 版的无进展生存期(由研究者或通过组织病理学确认可疑疾病进展)和总生存期,因此在统计分析的方法中就需要用到分层生存分析,包括分层logRank检验、分层Cox回归。

在这项研究中,针对主要结局指标的分析,研究者的方法如下:

  • 使用非参数 Kaplan-Meier 方法估计无进展生存期和总生存期。

  • 使用分层logRank检验评估组间无进展生存期和总生存期的差异;

  • 并使用分层 Cox 比例风险模型和 Efron 平局处理方法评估差异的大小。

  • 随机分层因素应用于所有分层分析。

da9d5cce6a79bc7b8e8f87ab02286a51.png

4.主要研究结果

主要研究结果表明,派姆单抗-放化疗组和安慰剂-放化疗组的24个月无进展生存率估计分别为68% (95%CI 62-73) 和57%(95%CI 51-63);两组均未达到中位数。PD-L1阳性(联合阳性评分≥1)肿瘤组和PD-L1阴性(联合阳性评分<1)肿瘤亚组的疾病进展或死亡比率分别为0.72(0.56-0.92)和0.61(0.18-2.07)。

c70618e7db79055b87fa940c41b32a91.png

Kaplan-Meier估计意向治疗人群中的无进展存活率

b7866f86c067fea758490abb7170a52c.png

意向治疗人群中特定方案亚组的无进展生存分析

后记

分层随机化试验是一种常见的临床试验设计,能够将参与者按照某些重要特征分成几个层次,然后在每个层次内进行随机分配。分层生存分析则是对这种设计下的生存数据进行分析,考虑到了不同分层因素对生存时间或生存曲线的影响,从而更准确地评估治疗效果或预后因素。

对于临床试验的文献来说,我们不仅要看作者用了什么统计学方法,更重要的是他的研究设计,比如说,样本量怎么计算的?用了什么样的随机化方法?缺失数据如何处理?主要结局是什么数据类型?相对应的又采用了什么样的统计学方法等等。只有设计严谨,才不会白白浪费人力物力财力!

今天的临床试验之随机化干货就分享到这里!如果你的团队想做临床试验,但无从下手,开不了头,不妨和老郑我来聊一聊,这方面老郑的团队还是在行的,感兴趣的话点击下方链接,快来咨询!

郑老师团队服务 | 临床试验项目设计与数据分析,支持你们发表高影响因子SCI论文

参考文献

1.王瑞平.临床试验研究方案设计中的统计学要素[J].上海医药,2023,44(03):65-70.

2.国家药品监督管理局药品审评中心.药物临床试验随机分配指导原则(试行)[S]. 2022年第5号. 

https://www.cde.org.cn/main/news/viewInfoCommon/402c511b46bfa8c472fd6aad6e164557

3.李雪峰,吴艳乔.药物临床试验中的随机化与盲法[J].西南军医,2011,13(02):326-327.

4.Lorusso D, Xiang Y, Duska LR, et al; ENGOT-cx11/GOG-3047/KEYNOTE-A18 investigators. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial. Lancet. 2024 Apr 6;403(10434):1341-1350.

原文PDF获取方式:本公众号回复关键词“原文”


详情请点击下方:

随机对照研究如何进行数据分析?欢迎参加临床试验设计与数据分析培训班!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值