1. 初等矩阵和矩阵的区别和联系
初等矩阵是一种特殊的方阵,它是由单位矩阵进行一次初等行变换得到的。初等矩阵与一般矩阵的联系和区别如下:
初等矩阵的定义
初等矩阵是由单位矩阵 I I I 经过一次初等行变换得到的矩阵。根据初等行变换的类型,初等矩阵可以分为三种:
- 交换型初等矩阵:交换单位矩阵的第 i i i 行和第 j j j 行
- 倍乘型初等矩阵:将单位矩阵的第 i i i 行乘以非零常数 k k k
- 倍加型初等矩阵:将单位矩阵的第 j j j 行的 k k k 倍加到第 i i i 行上
初等矩阵与矩阵的联系
-
实现初等行变换:
- 如果要对矩阵 A A A 进行初等行变换,可以通过左乘相应的初等矩阵 E E E 来实现: E A EA EA
- 例如,要交换矩阵 A A A 的第1行和第2行,只需用交换型初等矩阵 E E E 左乘: E A EA EA
-
矩阵的等价与初等矩阵:
- 任何矩阵都可以通过有限次初等行变换转化为行简化阶梯形矩阵
- 如果矩阵 A A A 经过有限次初等行变换可变为矩阵 B B B,则存在可逆矩阵 P P P,使得 P A = B PA = B PA=B,其中 P P P 是若干个初等矩阵的乘积
-
求逆矩阵:
- 初等矩阵是可逆的,其逆矩阵也是同类型的初等矩阵
- 可以利用初等矩阵进行高斯-约当消元法求矩阵的逆
区别
-
定义不同:
- 初等矩阵是由单位矩阵经过一次初等变换得到的特殊矩阵
- 一般矩阵没有这样的限制
-
结构不同:
- 初等矩阵具有特定的结构,如交换型初等矩阵只有两行与单位矩阵不同
- 一般矩阵的元素可以是任意的
-
用途不同:
- 初等矩阵主要用于实现矩阵的初等变换,是线性代数中的工具
- 一般矩阵可以表示更广泛的线性变换和数据结构
-
可逆性:
- 所有初等矩阵都是可逆的
- 一般矩阵不一定可逆
初等矩阵的重要性在于它们提供了一种系统的方法来理解和执行矩阵的行变换,是线性代数中矩阵理论的重要工具。
2. 那所有的初等矩阵,都能变为单位矩阵?
是的,所有的初等矩阵都能变回单位矩阵。这是因为每个初等矩阵都是可逆的,并且它的逆矩阵也是同类型的初等矩阵。
具体来说:
-
交换型初等矩阵 E i j E_{ij} Eij(交换第 i i i 行和第 j j j 行):
- 它的逆矩阵就是它本身: E i j − 1 = E i j E_{ij}^{-1} = E_{ij} Eij−1=Eij
- 因为再次交换相同的两行会恢复原状,所以 E i j ⋅ E i j = I E_{ij} \cdot E_{ij} = I Eij⋅Eij=I
-
倍乘型初等矩阵 E i ( k ) E_i(k) Ei(k)(将第 i i i 行乘以非零常数 k k k):
- 它的逆矩阵是 E i ( 1 / k ) E_i(1/k) Ei(1/k)(将第 i i i 行乘以 1 / k 1/k 1/k)
- 因此 E i ( k ) ⋅ E i ( 1 / k ) = I E_i(k) \cdot E_i(1/k) = I Ei(k)⋅Ei(1/k)=I
-
倍加型初等矩阵 E i j ( k ) E_{ij}(k) Eij(k)(将第 j j j 行的 k k k 倍加到第 i i i 行):
- 它的逆矩阵是 E i j ( − k ) E_{ij}(-k) Eij(−k)(将第 j j j 行的 − k -k −k 倍加到第 i i i 行)
- 所以 E i j ( k ) ⋅ E i j ( − k ) = I E_{ij}(k) \cdot E_{ij}(-k) = I Eij(k)⋅Eij(−k)=I
这个性质非常重要,它意味着任何通过初等行变换实现的矩阵操作都是可逆的。这就是为什么我们可以使用初等矩阵进行高斯消元法来求解线性方程组,以及使用初等行变换来计算矩阵的逆。
每个初等矩阵代表一个基本的可逆操作,通过将适当的逆操作应用于初等矩阵,我们总能得到单位矩阵。
3. 初等矩阵的公式, 对于矩阵能用嘛
是的,对任何矩阵(不仅限于初等矩阵)都可以进行这些基本操作:
- 交换行操作:交换矩阵的第 i i i 行和第 j j j 行
- 倍乘行操作:将矩阵的第 i i i 行乘以非零常数 k k k
- 倍加行操作:将矩阵的第 j j j 行的 k k k 倍加到第 i i i 行上
这些操作被称为初等行变换,是线性代数中最基本的矩阵操作。它们可以应用于任何矩阵,不仅仅是初等矩阵。
关键区别在于:
- 初等矩阵是由单位矩阵经过一次这样的操作得到的特殊矩阵
- 初等行变换则是可以应用于任何矩阵的操作
当我们对矩阵 A A A 执行初等行变换时,这等效于用相应的初等矩阵 E E E 左乘 A A A,即 E A EA EA。例如:
- 交换矩阵 A A A 的第1行和第2行,等价于用交换型初等矩阵 E 12 E_{12} E12 左乘 A A A
- 将矩阵 A A A 的第3行乘以2,等价于用倍乘型初等矩阵 E 3 ( 2 ) E_3(2) E3(2) 左乘 A A A
这些操作是高斯消元法、求矩阵的秩、求逆矩阵等计算的基础,可以应用于任何矩阵。