1. Langchain中, chain分类总结
在 Langchain 中,Chain 是构建复杂应用的核心构建块。Chain 是由一系列的组件(如 LLMs、工具和其他链)按特定顺序组合而成,通常用于将多个操作串联起来,以完成复杂的任务。
在 Langchain 中,Chain 可以分为以下几类:
1. 基础链 (Basic Chains)
基础链是最简单的链,通常由一个单一的操作组成。最常见的就是将一个语言模型(LLM)与输入数据直接连接,输出结果。
- LLMChain:通常用于构建一个与语言模型(如 GPT-3)进行交互的链,它接收输入,生成一个输出。
- TextPromptChain:通过组合文本提示与语言模型,来实现自然语言处理任务。
2. 组合链 (Composite Chains)
组合链将多个基础链或其他链组合成一个更复杂的链,通常用于更复杂的任务。它们通过顺序地将输入传递给多个链来处理数据。
- SequentialChain:按顺序执行多个链,每个链的输出作为下一个链的输入。这种类型的链适用于处理需要分步骤的任务,例如文本生成、信息提取等。
- MapReduceChain:将数据分割成小块,独立处理后再进行合并。适用于需要对大量数据进行分布式处理的场景。
3. 条件链 (Conditional Chains)
条件链根据某些条件来决定接下来使用哪个链,通常在执行时动态选择。
- ConditionalChain:根据输入或其他外部因素,选择要执行的链。例如,给定某个输入,可以选择执行 A 链或 B 链。
4. 多步链 (Multi-Step Chains)
多步链是指执行一系列操作,其中每一步可能涉及到多个不同的处理步骤,或者在执行过程中需要与外部系统进行交互。
- AgentChain:它能够通过多个步骤智能地选择工具并调用它们,适用于需要复杂决策逻辑的任务。例如,某些任务需要从多个外部 API 获取数据,或者根据前一步的输出执行特定操作。
5. 自定义链 (Custom Chains)
自定义链允许用户根据自己的需求定义处理逻辑。用户可以将多个操作组合在一起,灵活地处理输入和输出。
- Custom Chain:用户可以通过自定义 Chain 来满足复杂的逻辑需求。它可以包含多个组件,如输入解析、模型调用、后处理等。
6. 工具链 (Tool-based Chains)
工具链将各种外部工具(如数据库查询、API 调用等)集成到链中,通常在智能体中使用。
- ToolAgent:可以与各种外部工具进行交互,如执行 SQL 查询、调用 REST API、读取文件等。它们通常用于需要获取外部资源或执行复杂计算的应用。
总结:
Langchain 中的 Chain 是构建应用程序的基本组成部分。不同的链类型可以满足从简单任务到复杂流程的不同需求。通过合理地选择和组合这些链,能够构建出强大且灵活的应用程序。
2. LangChain LCEL背景下, Chain的综合实战
在 Langchain 中,LCEL (Language Chain Execution Logic)
是一种增强型执行逻辑,主要用于处理多步骤、