Langchain Chain 的常见类型以及简单实战

1. Langchain中, chain分类总结

在 Langchain 中,Chain 是构建复杂应用的核心构建块。Chain 是由一系列的组件(如 LLMs、工具和其他链)按特定顺序组合而成,通常用于将多个操作串联起来,以完成复杂的任务。

在 Langchain 中,Chain 可以分为以下几类:

1. 基础链 (Basic Chains)

基础链是最简单的链,通常由一个单一的操作组成。最常见的就是将一个语言模型(LLM)与输入数据直接连接,输出结果。

  • LLMChain:通常用于构建一个与语言模型(如 GPT-3)进行交互的链,它接收输入,生成一个输出。
  • TextPromptChain:通过组合文本提示与语言模型,来实现自然语言处理任务。

2. 组合链 (Composite Chains)

组合链将多个基础链或其他链组合成一个更复杂的链,通常用于更复杂的任务。它们通过顺序地将输入传递给多个链来处理数据。

  • SequentialChain:按顺序执行多个链,每个链的输出作为下一个链的输入。这种类型的链适用于处理需要分步骤的任务,例如文本生成、信息提取等。
  • MapReduceChain:将数据分割成小块,独立处理后再进行合并。适用于需要对大量数据进行分布式处理的场景。

3. 条件链 (Conditional Chains)

条件链根据某些条件来决定接下来使用哪个链,通常在执行时动态选择。

  • ConditionalChain:根据输入或其他外部因素,选择要执行的链。例如,给定某个输入,可以选择执行 A 链或 B 链。

4. 多步链 (Multi-Step Chains)

多步链是指执行一系列操作,其中每一步可能涉及到多个不同的处理步骤,或者在执行过程中需要与外部系统进行交互。

  • AgentChain:它能够通过多个步骤智能地选择工具并调用它们,适用于需要复杂决策逻辑的任务。例如,某些任务需要从多个外部 API 获取数据,或者根据前一步的输出执行特定操作。

5. 自定义链 (Custom Chains)

自定义链允许用户根据自己的需求定义处理逻辑。用户可以将多个操作组合在一起,灵活地处理输入和输出。

  • Custom Chain:用户可以通过自定义 Chain 来满足复杂的逻辑需求。它可以包含多个组件,如输入解析、模型调用、后处理等。

6. 工具链 (Tool-based Chains)

工具链将各种外部工具(如数据库查询、API 调用等)集成到链中,通常在智能体中使用。

  • ToolAgent:可以与各种外部工具进行交互,如执行 SQL 查询、调用 REST API、读取文件等。它们通常用于需要获取外部资源或执行复杂计算的应用。

总结:

Langchain 中的 Chain 是构建应用程序的基本组成部分。不同的链类型可以满足从简单任务到复杂流程的不同需求。通过合理地选择和组合这些链,能够构建出强大且灵活的应用程序。

2. LangChain LCEL背景下, Chain的综合实战

Langchain 中,LCEL (Language Chain Execution Logic) 是一种增强型执行逻辑,主要用于处理多步骤、

### LangChain框架概述 LangChain框架通过一系列开源库提供了丰富的功能,支持开发者快速构建、优化和部署大型语言模型(LLM)应用[^1]。该框架旨在简化自然语言处理任务中的常见挑战,并提供灵活的工具来定制化解决方案。 #### 主要组成部分 - **langchain-core**: 这是整个生态系统的基础模块,包含了核心抽象类和其他基础结构元素,使得其他高级特性得以建立在其之上。 - **Callbacks**: 提供了一些过程回调函数,在执行特定操作期间可以触发这些事件处理器来进行日志记录或其他辅助工作流管理活动[^3]。 ### 关键概念解析 对于初学者来说,理解以下几个基本术语非常重要: - **语言模型 (LLMs)**: 是指那些经过大量文本训练而具备理解和生成人类语言能力的人工智能系统[^2]。它们构成了大多数现代NLP应用程序的核心部分。 - **提示工程**: 涉及设计有效的输入格式或指令序列给定的语言模型,以便获得预期的结果输出。良好的提示可以帮助提高响应的质量并引导对话方向。 ### 实现首个LangChain项目 动手实践总是最好的学习方式之一。下面是一个简单的例子展示如何设置环境以及创建最基础版本的应用程序——“Hello World”。 #### 设置开发环境 确保安装了Python运行时之后,可以通过pip命令轻松获取所需依赖项: ```bash pip install langchain ``` 接着初始化一个新的Python文件用于编写代码逻辑。 #### 编写简单示例 这里给出一段非常初级但完整的脚本作为起点: ```python from langchain import LangChain if __name__ == "__main__": chain = LangChain() response = chain.run("你好,世界!") print(response) ``` 这段代码展示了怎样加载预设配置好的链路实例(`LangChain`)并通过调用`run()`方法传递消息字符串从而得到回复内容。尽管这个案例相对直接明了,但它确实遵循着实际生产环境中更为复杂的交互模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值