【第十七课】区域经济分析——探索性空间数据分析方法

一、前言

要素的属性及位置是 GIS数据的固有信息。此信息将用于创建视觉上可 进行分析的地图。统计分析有助于从 GIS 数据中提取只靠查看地图无法直接 获得的额外信息,例如各属性值如何分配,数据中是否存在空间趋势或者要素 是否能够形成空间模式。因此,对数据进行探索性空间数据分析能更深入了解 数据,认识研究对象,从而有利于更好地对数据进行空间建模与分析,做出更好的决策。

二、探索性空间数据分析方法

19 世纪60 年代的 Tukey 面向数据分析的主题,提出了探索性数据分析 (EDA,Exploratory Data Analysis)的新思路,解决了传统统计分析中数据不能满 足正态假设,基于均值、方差的模型在实际数据分析中缺乏稳定性的问题,并且 满足了对海量数据进行分析的要求。EDA 的特点是对数据来源的总体不作假 设,并且假设检验也经常被排除在外。这一技术使用统计图表、图形和统计概 况的方法对数据的特征进行分析和描述,技术核心是“让数据说话”,在探索的 基础上对数据进行更为复杂的建模分析(王远飞,何洪林,2007)。在EDA的基 础上衍生出的是探索性空间数据分析(ESDA,Exploratory Spatial Data Analysis),是EDA在空间数据分析领域的推广。 在进行区域经济空间分析与建模之前,应该使用 ESDA 工具浏览数据。此 工具能使我们更深入地了解数据的分布、寻找离群值、进行全局趋势分析以及检测空间的自相关和方向变异等任务,并为空间分析与建模选择最合适的方法 和参数。例如,在进行回归分析之前,应该事先检查数据的分布,是否有异常 值,是否具有空间趋势,是否符合正态分布等等。ESDA 环境允许用户用图形 的方法研究数据集,从而能更好地理解所要研

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

端木宛白的GIS课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值